Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharmacol ; 897: 173948, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33609564

ABSTRACT

The soluble guanylate cyclase (sGC)/GMPc pathway plays an important role in controlling pulmonary arterial hypertension (PAH). We investigated whether the novel sGC stimulator trans-4-methoxy-ß-nitrostyrene (T4MN), ameliorates monocrotaline (MCT)-induced PAH. At Day 0, rats were injected with MCT (60 mg/kg, s. c.). Control (CNT) rats received an equal volume of monocrotaline vehicle only (s.c.). Four weeks later, MCT-treated rats were orally treated for 14 days with T4MN (75 mg/kg/day) (MCT-T4MN group) or its vehicle (MCT-V group), and with sildenafil (SIL; 50 mg/kg) (MCT-SIL group). Compared to the CNT group, MCT treatment induced a significant increase in both the Fulton index and RV systolic pressure but significantly reduced the maximum relaxation induced by acetylcholine. Indeed, MCT treatment increased the wall thickness of small and larger pulmonary arterioles. Oral treatment with T4MN and SIL reduced the Fulton index and RV systolic pressure compared to the MCT-V group. Maximum relaxation induced by acetylcholine was significantly enhanced in MCT-SIL group. Both T4MN and SIL significantly reduced the enhanced wall thickness of small and larger pulmonary arterioles. Treatment with T4MN has a beneficial effect on PAH by reducing RV systolic pressure and consequently right ventricular hypertrophy, and by reducing pulmonary artery remodeling. T4MN may represent a new therapeutic or complementary approach for the treatment of PAH.


Subject(s)
Arterioles/drug effects , Enzyme Activators/pharmacology , Hypertension, Pulmonary/drug therapy , Lung/blood supply , Soluble Guanylyl Cyclase/metabolism , Styrenes/pharmacology , Vascular Remodeling/drug effects , Animals , Arterioles/enzymology , Arterioles/physiopathology , Disease Models, Animal , Enzyme Activation , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/enzymology , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/enzymology , Hypertrophy, Right Ventricular/physiopathology , Hypertrophy, Right Ventricular/prevention & control , Monocrotaline , Signal Transduction , Vasodilation/drug effects , Ventricular Dysfunction, Right/enzymology , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/prevention & control , Ventricular Function, Right/drug effects , Ventricular Remodeling/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...