Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
1.
Blood Cancer Discov ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747501

ABSTRACT

Somatic variants in DNA damage-response genes such as ATM are widespread in hematologic malignancies. ATM protein is essential for double-strand DNA break repair. Germline ATM-deficiencies underlie ataxia-telangiectasia (A-T), a disease manifested by radio-sensitivity, immunodeficiency and predisposition to lymphoid malignancies. A-T patients diagnosed with malignancies have poor tolerance to chemotherapy or radiation. We investigated chimeric-antigen receptor (CAR) T cells using primary T-cells from patients with A-T (ATM-/-), heterozygote donors (ATM+/-) and healthy donors. ATM-/- T-cells proliferate and can be successfully transduced with CARs, though functional impairment of ATM-/- CAR-T cells was observed. Retroviral transduction of the CAR in ATM-/- T-cells resulted in high rates of chromosomal lesions at CAR insertion sites, as confirmed by next-generation long-read sequencing. This work suggests that ATM is essential to preserve genome integrity of CAR-T cells during retroviral manufacturing, and its lack poses a risk of chromosomal translocations and potential leukemogenicity.

2.
J Natl Cancer Inst ; 116(4): 539-546, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-37966914

ABSTRACT

BACKGROUND: Ameloblastoma is a rare odontogenic neoplasm frequently located in the mandible. Standard treatment involves radical bone resection and immediate reconstruction, causing functional, aesthetic, and psychological impairments. The BRAF V600E mutation is present in approximately 80% of mandible ameloblastomas, and BRAF inhibitors have demonstrated sustained responses in unresectable cases. METHODS: We identified ameloblastoma patients planned for ablative surgery and screened them for BRAF V600E mutation. Neoadjuvant BRAF inhibitors were offered to facilitate jaw preservation surgery. Retrospective data collection encompassed treatment regimens, tolerability, tumor response, and conversion to mandible preservation surgery. RESULTS: Between 2017 and 2022, a total of 11 patients received dabrafenib (n = 6) or dabrafenib with trametinib (n = 5). The median age was 19 (range = 10-83) years. Median treatment duration was 10 (range = 3-20) months. All (100%) patients achieved a radiological response. Ten (91%) patients successfully converted to mandible preservation surgery with residual tumor enucleation. One patient attained complete radiological response, and surgery was not performed. Among the 10 surgically treated patients, all exhibited a pathological response, with 4 achieving near complete response and 6 partial response. At a median follow-up of 14 (range = 7-37) months after surgery, 1 case of recurrence was observed. Grade 1-2 adverse effects were reported in 8 (73%) patients, with a single case of grade 3 (hepatitis). Dose modification was necessary for 3 patients, and 4 experienced treatment interruptions, while 1 patient permanently discontinued therapy. CONCLUSIONS: Neoadjuvant BRAF inhibition may offer a safe and effective strategy for organ preservation in mandible ameloblastoma treatment.


Subject(s)
Ameloblastoma , Imidazoles , Oximes , Humans , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Ameloblastoma/drug therapy , Ameloblastoma/genetics , Ameloblastoma/surgery , Proto-Oncogene Proteins B-raf/genetics , Neoadjuvant Therapy , Retrospective Studies , Organ Preservation , Mutation , Protein Kinase Inhibitors/therapeutic use , Mandible
3.
Biomedicines ; 10(12)2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36551948

ABSTRACT

BACKGROUND: Gain-of-function mutations in CARD14 have recently been shown to be involved in the pathogenesis of psoriasis and pityriasis rubra pilaris (PRP). Those mutations were found to activate the NF-kB signaling pathway. OBJECTIVE: Zebrafish is often used to model human diseases in general, and in skin disorders more particularly. In the present study, we aimed to examine the effect of CARD14 overexpression in zebrafish with the aim to validate this model for future translational applications. METHODS: We used light microscopy, scanning electron microscopy, histological analysis and whole mount in situ hybridization as well as real-time PCR to ascertain the effect of CARD14 overexpression in the developing zebrafish. RESULTS: Overexpression of human CARD14 had a marked morphological and developmental effect on the embryos. Light microscopy demonstrated a characteristic cutaneous pattern including a granular surface and a spiky pigment pattern. In situ hybridization revealed keratinocytes of uneven size and shape. Scanning electron microscopy showed aberrant production of actin microridges and a rugged keratinocyte cell surface, reminiscent of the human hyperkeratotic phenotype. Developmentally, overexpression of CARD14 had a variable effect on anterior-posterior axis symmetry. Similar to what has been observed in humans with psoriasis or PRP, NF-kB expression was higher in CARD14-overexpressing embryos compared to controls. CONCLUSIONS: Overexpression of CARD14 results in a distinct cutaneous pattern accompanied by hyperactivation of the NF-kB pathway, suggesting that the zebrafish represents a useful system to model CARD14-associated papulosquamous diseases.

4.
Cancer Inform ; 21: 11769351221127875, 2022.
Article in English | MEDLINE | ID: mdl-36225330

ABSTRACT

Motivation: Prediction of cancer outcome is a major challenge in oncology and is essential for treatment planning. Repositories such as The Cancer Genome Atlas (TCGA) contain vast amounts of data for many types of cancers. Our goal was to create reliable prediction models using TCGA data and validate them using an external dataset. Results: For 16 TCGA cancer type cohorts we have optimized a Random Forest prediction model using parameter grid search followed by a backward feature elimination loop for dimensions reduction. For each feature that was removed, the model was retrained and the area under the curve of the receiver operating characteristic (AUC-ROC) was calculated using test data. Five prediction models gave AUC-ROC bigger than 80%. We used Clinical Proteomic Tumor Analysis Consortium v3 (CPTAC3) data for validation. The most enriched pathways for the top models were those involved in basic functions related to tumorigenesis and organ development. Enrichment for 2 prediction models of the TCGA-KIRP cohort was explored, one with 42 genes (AUC-ROC = 0.86) the other is composed of 300 genes (AUC-ROC = 0.85). The most enriched networks for both models share only 5 network nodes: DMBT1, IL11, HOXB6, TRIB3, PIM1. These genes play a significant role in renal cancer and might be used for prognosis prediction and as candidate therapeutic targets. Availability And Implementation: The prediction models were created and tested using Python SciKit-Learn package. They are freely accessible via a friendly web interface we called surviveAI at https://tinyurl.com/surviveai.

5.
Front Oncol ; 12: 959133, 2022.
Article in English | MEDLINE | ID: mdl-36091130

ABSTRACT

We found that pediatric glioblastoma (PED-GBM) cell lines from diffuse intrinsic pontine glioma (DIPG) carrying the H3K27M mutation or from diffuse hemispheric glioma expressing the H3G34R mutation are sensitive to the combination of vorinostat (a histone deacetylase inhibitor) and PARP-1 inhibitors. The combined treatment increased the phosphorylation of eIF2α (P-eIF2α) relative to each drug alone and enhanced the decrease in cell survival. To explore the role played by increased P-eIF2α in modulating PED-GBM survival and response to treatments, we employed brain-penetrating inhibitors of P-eIF2α dephosphorylation: salubrinal and raphin-1. These drugs increased P-eIF2α, DNA damage, and cell death, similarly affecting the sensitivity of DIPG cells and derived neurospheres to PARP-1 inhibitors. Interestingly, these drugs also decreased the level of eIF2Bϵ (the catalytic subunit of eIF2B) and increased its phosphorylation, thereby enhancing the effect of increased P-eIF2α. Transient transfection with the S51D phosphomimetic eIF2α variant recapitulated the effect of salubrinal and raphin-1 on PED-GBM survival and sensitivity to PARP-1 inhibitors. Importantly, either salubrinal or raphin-1 dramatically increased the sensitivity of DIPG cells to radiation, the main treatment modality of PED-GBM. Finally, PED-GBM was more sensitive than normal human astrocytes to salubrinal, raphin-1, and the treatment combinations described herein. Our results indicate that combinations of histone deacetylase inhibitors and PARP-1 inhibitors should be evaluated for their toxicity and efficacy in PED-GBM patients and point to drugs that increase P-eIF2α or modulate its downstream effectors as a novel means of treating PED-GBM.

7.
Cell ; 185(5): 764-776, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35245480

ABSTRACT

In the last decade, the notion that mRNA modifications are involved in regulation of gene expression was demonstrated in thousands of studies. To date, new technologies and methods allow accurate identification, transcriptome-wide mapping, and functional characterization of a growing number of RNA modifications, providing important insights into the biology of these marks. Most of the methods and approaches were developed for studying m6A, the most prevalent internal mRNA modification. However, unique properties of other RNA modifications stimulated the development of additional approaches. In this technical primer, we will discuss the available tools and approaches for detecting and studying different RNA modifications.


Subject(s)
RNA Processing, Post-Transcriptional , RNA , Epigenesis, Genetic , RNA/genetics , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome
8.
Pediatr Nephrol ; 37(7): 1623-1646, 2022 07.
Article in English | MEDLINE | ID: mdl-34993602

ABSTRACT

BACKGROUND: Genetic kidney diseases contribute a significant portion of kidney diseases in children and young adults. Nephrogenetics is a rapidly evolving subspecialty; however, in the clinical setting, increased use of genetic testing poses implementation challenges. Consequently, we established a national nephrogenetics clinic to apply a multidisciplinary model. METHODS: Patients were referred from different pediatric or adult nephrology units across the country if their primary nephrologist suspected an undiagnosed genetic kidney disease. We determined the diagnostic rate and observed the effect of diagnosis on medical care. We also discuss the requirements of a nephrogenetics clinic in terms of logistics, recommended indications for referral, and building a multidisciplinary team. RESULTS: Over 24 months, genetic evaluation was completed for a total of 74 unrelated probands, with an age range of 10 days to 72 years. The most common phenotypes included congenital anomalies of the kidneys and urinary tract, nephrotic syndrome or unexplained proteinuria, nephrocalcinosis/nephrolithiasis, tubulopathies, and unexplained kidney failure. Over 80% of patients were referred due to clinical suspicion of an undetermined underlying genetic diagnosis. A molecular diagnosis was reached in 42/74 probands, yielding a diagnostic rate of 57%. Of these, over 71% of diagnoses were made via next generation sequencing (gene panel or exome sequencing). CONCLUSIONS: We identified a substantial fraction of genetic kidney etiologies among previously undiagnosed individuals which influenced subsequent clinical management. Our results support that nephrogenetics, a rapidly evolving field, may benefit from well-defined multidisciplinary co-management administered by a designated team of nephrologist, geneticist, and bioinformatician. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Genetic Testing , Kidney Diseases , Child , Humans , Kidney Diseases/genetics , Phenotype , Referral and Consultation , Exome Sequencing/methods
9.
J Med Genet ; 59(7): 691-696, 2022 07.
Article in English | MEDLINE | ID: mdl-34215651

ABSTRACT

BACKGROUND: The molecular basis of heterotaxy and congenital heart malformations associated with disruption of left-right asymmetry is broad and heterogenous, with over 25 genes implicated in its pathogenesis thus far. OBJECTIVE: We sought to elucidate the molecular basis of laterality disorders and associated congenital heart defects in a cohort of 30 unrelated probands of Arab-Muslim descent, using next-generation sequencing techniques. METHODS: Detailed clinical phenotyping followed by whole-exome sequencing (WES) was pursued for each of the probands and their parents (when available). Sanger sequencing was used for segregation analysis of disease-causing mutations in the families. RESULTS: Using WES, we reached a molecular diagnosis for 17 of the 30 probands (56.7%). Genes known to be associated with heterotaxy and/or primary ciliary dyskinesia, in which homozygous pathogenic or likely pathogenic variants were detected, included CFAP53 (CCDC11), CFAP298 (C21orf59), CFAP300, LRRC6, GDF1, DNAAF1, DNAH5, CCDC39, CCDC40, PKD1L1 and TTC25. Additionally, we detected a homozygous disease causing mutation in DAND5, as a novel recessive monogenic cause for heterotaxy in humans. Three additional probands were found to harbour variants of uncertain significance. These included variants in DNAH6, HYDIN, CELSR1 and CFAP46. CONCLUSIONS: Our findings contribute to the current knowledge regarding monogenic causes of heterotaxy and its associated congenital heart defects and underscore the role of next-generation sequencing techniques in the diagnostic workup of such patients, and especially among consanguineous families.


Subject(s)
Heart Defects, Congenital , Heterotaxy Syndrome , Cohort Studies , Heart Defects, Congenital/genetics , Heterotaxy Syndrome/genetics , Homozygote , Humans , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Mutation/genetics , Exome Sequencing
10.
Front Genet ; 13: 1018062, 2022.
Article in English | MEDLINE | ID: mdl-36699461

ABSTRACT

Background: Genetic conditions contribute a significant portion of disease etiologies in children admitted to general pediatric wards worldwide. While exome sequencing (ES) has improved clinical diagnosis and management over a variety of pediatric subspecialties, it is not yet routinely used by general pediatric hospitalists. We aim to investigate the impact of exome sequencing in sequencing-naive children suspected of having monogenic disorders while receiving inpatient care. Methods: We prospectively employed exome sequencing in children admitted to the general pediatric inpatient service at a large tertiary medical center in Israel. Genetic analysis was triggered by general and/or subspecialist pediatricians who were part of the primary inpatient team. We determined the diagnostic yield among children who were referred for exome sequencing and observed the effects of genetic diagnosis on medical care. Results: A total of fifty probands were evaluated and exome sequenced during the study period. The most common phenotypes included were neurodevelopmental (56%), gastrointestinal (34%), and congenital cardiac anomalies (24%). A molecular diagnosis was reached in 38% of patients. Among seven patients (37%), the molecular genetic diagnosis influenced subsequent clinical management already during admission or shortly following discharge. Conclusion: We identified a significant fraction of genetic etiologies among undiagnosed children admitted to the general pediatric ward. Our results support that early application of exome sequencing may be maximized by pediatric hospitalists' high index of suspicion for an underlying genetic etiology, prompting an in-house genetic evaluation. This framework should include a multidisciplinary co-management approach of the primary care team working alongside with subspecialties, geneticists and bioinformaticians.

11.
Nat Commun ; 12(1): 7185, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34893620

ABSTRACT

The prevalent m6Am mRNA cap modification was recently identified as a valid target for removal by the human obesity gene FTO along with the previously established m6A mRNA modification. However, the deposition and dynamics of m6Am in regulating obesity are unknown. Here, we investigate the liver m6A/m methylomes in mice fed on a high fat Western-diet and in ob/ob mice. We find that FTO levels are elevated in fat mice, and that genes which lost m6Am marking under obesity are overly downregulated, including the two fatty-acid-binding proteins FABP2, and FABP5. Furthermore, the cellular perturbation of FTO correspondingly affect protein levels of its targets. Notably, generally m6Am- but not m6A-methylated genes, are found to be highly enriched in metabolic processes. Finally, we deplete all m6A background via Mettl3 knockout, and unequivocally uncover the association of m6Am methylation with increased mRNA stability, translation efficiency, and higher protein expression. Together, these results strongly implicate a dynamic role for m6Am in obesity-related translation regulation.


Subject(s)
Adenosine/analogs & derivatives , Adenosine/metabolism , Obesity/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Animals , Diet, Western , Epigenomics , Fatty Acid-Binding Proteins/metabolism , Male , Methylation , Mice , Mice, Inbred C57BL , Neoplasm Proteins , RNA Stability , RNA, Messenger/metabolism
12.
J Tissue Eng Regen Med ; 15(12): 1155-1161, 2021 12.
Article in English | MEDLINE | ID: mdl-34599642

ABSTRACT

Ameloblastoma is a neoplasm arising in the craniofacial skeleton. Proliferating odontogenic epithelial cells comprise this benign, yet locally invasive tumor, often causing severe disfiguration. High recurrence rate entails ablative surgical resection, which is the current standard of care, resulting in subsequent critical size osteocutaneous defects. The high incidence of BRAF mutations in ameloblastoma, most notably the BRAF V600E mutation, enabled the use of BRAF inhibiting agent in a neoadjuvant setting. In this investigator-initiated, open-label study, three consecutive pediatric patients, with confirmed BRAF V600E ameloblastoma deemed marginally resectable, were treated with BRAF inhibiting agents, prior to undergoing surgery. The use of upfront BRAF inhibitor treatment resulted in substantial tumor regression, allowing for non-mutilating complete surgical removal, ad integrum bone regeneration and organ preservation. All patients showed a marked radiologic and clinical response to medical treatment, enabling successful conservative surgery. Microscopically, all patients showed evidence of minimal residual tumor with extensive tumor necrosis, fibrosis and generation of new bone. At a median follow-up of 31 months, all patients remained free of disease. Face preservation therapy was achieved in pediatric patients presenting with BRAF V600E mutated ameloblastoma. Our study demonstrates the translational potential of targeted therapy as a neoadjuvant agent. Patient-specific organ preservation therapy should be considered as the new standard of care in ameloblastoma, mainly for children and adolescents.


Subject(s)
Ameloblastoma , Mandible , Mandibular Neoplasms , Mutation, Missense , Proto-Oncogene Proteins B-raf/genetics , Adolescent , Ameloblastoma/diagnostic imaging , Ameloblastoma/genetics , Ameloblastoma/surgery , Amino Acid Substitution , Child , Follow-Up Studies , Humans , Male , Mandible/diagnostic imaging , Mandible/surgery , Mandibular Neoplasms/diagnostic imaging , Mandibular Neoplasms/genetics , Mandibular Neoplasms/surgery
14.
Sci Rep ; 11(1): 19099, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580403

ABSTRACT

Exome sequencing (ES) is an important diagnostic tool for individuals with neurodevelopmental disorders (NDD) and/or multiple congenital anomalies (MCA). However, the cost of ES limits the test's accessibility for many patients. We evaluated the yield of publicly funded clinical ES, performed at a tertiary center in Israel, over a 3-year period (2018-2020). Probands presented with (1) moderate-to-profound global developmental delay (GDD)/intellectual disability (ID); or (2) mild GDD/ID with epilepsy or congenital anomaly; and/or (3) MCA. Subjects with normal chromosomal microarray analysis who met inclusion criteria were included, totaling 280 consecutive cases. Trio ES (proband and parents) was the default option. In 252 cases (90.0%), indication of NDD was noted. Most probands were males (62.9%), and their mean age at ES submission was 9.3 years (range 1 month to 51 years). Molecular diagnosis was reached in 109 probands (38.9%), mainly due to de novo variants (91/109, 83.5%). Disease-causing variants were identified in 92 genes, 15 of which were implicated in more than a single case. Male sex, families with multiple-affected members and premature birth were significantly associated with lower ES yield (p < 0.05). Other factors, including MCA and coexistence of epilepsy, autism spectrum disorder, microcephaly or abnormal brain magnetic resonance imaging findings, were not associated with the yield. To conclude, our findings support the utility of clinical ES in a real-world setting, as part of a publicly funded genetic workup for individuals with GDD/ID and/or MCA.


Subject(s)
Abnormalities, Multiple/diagnosis , Exome Sequencing/economics , Financing, Government , Genetic Testing/economics , Neurodevelopmental Disorders/diagnosis , Abnormalities, Multiple/economics , Abnormalities, Multiple/genetics , Adolescent , Adult , Child , Child, Preschool , Cost-Benefit Analysis , Feasibility Studies , Female , Genetic Counseling/economics , Genetic Counseling/methods , Genetic Counseling/statistics & numerical data , Genetic Testing/methods , Genetic Testing/statistics & numerical data , Humans , Infant , Infant, Newborn , Israel , Male , Maternal Age , Neurodevelopmental Disorders/economics , Neurodevelopmental Disorders/genetics , Paternal Age , Pregnancy , Prenatal Diagnosis/economics , Prenatal Diagnosis/methods , Program Evaluation , Retrospective Studies , Tertiary Care Centers/economics , Tertiary Care Centers/statistics & numerical data , Exome Sequencing/statistics & numerical data , Young Adult
15.
PLoS One ; 16(2): e0247128, 2021.
Article in English | MEDLINE | ID: mdl-33630927

ABSTRACT

Human coronaviruses (HCoVs) cause mild to severe respiratory infection. Most of the common cold illnesses are caused by one of four HCoVs, namely HCoV-229E, HCoV-NL63, HCoV-HKU1 and HCoV-OC43. Several studies have applied global transcriptomic methods to understand host responses to HCoV infection, with most studies focusing on the pandemic severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV) and the newly emerging SARS-CoV-2. In this study, Next Generation Sequencing was used to gain new insights into cellular transcriptomic changes elicited by alphacoronavirus HCoV-229E. HCoV-229E-infected MRC-5 cells showed marked downregulation of superpathway of cholesterol biosynthesis and eIF2 signaling pathways. Moreover, upregulation of cyclins, cell cycle control of chromosomal replication, and the role of BRCA1 in DNA damage response, alongside downregulation of the cell cycle G1/S checkpoint, suggest that HCoV-229E may favors S phase for viral infection. Intriguingly, a significant portion of key factors of cell innate immunity, interferon-stimulated genes (ISGs) and other transcripts of early antiviral response genes were downregulated early in HCoV-229E infection. On the other hand, early upregulation of the antiviral response factor Apolipoprotein B mRNA editing enzyme catalytic subunit 3B (APOBEC3B) was observed. APOBEC3B cytidine deaminase signature (C-to-T) was previously observed in genomic analysis of SARS-CoV-2 but not HCoV-229E. Higher levels of C-to-T mutations were found in countries with high mortality rates caused by SARS-CoV-2. APOBEC activity could be a marker for new emerging CoVs. This study will enhance our understanding of commonly circulating HCoVs and hopefully provide critical information about still-emerging coronaviruses.


Subject(s)
Coronavirus 229E, Human/physiology , Coronavirus Infections/genetics , Transcriptome , Cell Line , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Humans
16.
Blood ; 137(7): 994-999, 2021 02 18.
Article in English | MEDLINE | ID: mdl-32915956
17.
J Exp Med ; 218(3)2021 03 01.
Article in English | MEDLINE | ID: mdl-33231617

ABSTRACT

The T cell receptor (TCR) signaling pathway is an ensemble of numerous proteins that are crucial for an adequate immune response. Disruption of any protein involved in this pathway leads to severe immunodeficiency and unfavorable clinical outcomes. Here, we describe an infant with severe immunodeficiency who was found to have novel biallelic mutations in SLP76. SLP76 is a key protein involved in TCR signaling and in other hematopoietic pathways. Previous studies of this protein were performed using Jurkat-derived human leukemic T cell lines and SLP76-deficient mice. Our current study links this gene, for the first time, to a human immunodeficiency characterized by early-onset life-threatening infections, combined T and B cell immunodeficiency, severe neutrophil defects, and impaired platelet aggregation. Hereby, we characterized aspects of the patient's immune phenotype, modeled them with an SLP76-deficient Jurkat-derived T cell line, and rescued some consequences using ectopic expression of wild-type SLP76. Understanding human diseases due to SLP76 deficiency is helpful in explaining the mixed T cell and neutrophil defects, providing a guide for exploring human SLP76 biology.


Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Blood Platelets/pathology , Neutrophils/pathology , Phosphoproteins/deficiency , Severe Combined Immunodeficiency/metabolism , Severe Combined Immunodeficiency/pathology , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Base Sequence , Blood Platelets/metabolism , Fatal Outcome , Humans , Infant , Infant, Newborn , Jurkat Cells , Mutation/genetics , Neutrophils/metabolism , Phenotype , Phosphoproteins/chemistry , Phosphoproteins/genetics , Phosphoproteins/metabolism , Receptors, Antigen, B-Cell/metabolism , Receptors, Antigen, T-Cell/metabolism , Severe Combined Immunodeficiency/immunology , Signal Transduction
18.
Front Immunol ; 11: 1775, 2020.
Article in English | MEDLINE | ID: mdl-33013830

ABSTRACT

Background: More than 50 different monogenic disorders have been identified as directly causing inflammatory bowel diseases, typically manifesting in the first years of life. We present the clinical course and immunological work-up of an adult patient who presented in adolescent years with an atypical gastrointestinal phenotype and was diagnosed more than two decades later with a monogenic disorder with important therapeutic implications. Methods: Whole exome sequencing was performed in a 37-years-old patient with a history of diarrhea since adolescence. Sanger sequencing was used to validate the suspected variant. Mass cytometry (CyTOF) and flow cytometry were conducted on peripheral blood mononuclear cells for deep immunophenotyping. Next-generation sequencing of the TCRB and IgH was performed for global immune repertoire analysis of circulating lymphocytes. Results: We identified a novel deleterious c.1455C>A (p.Y485X) mutation in LRBA. CyTOF studies demonstrated significant changes in immune landscape in the LRBA-deficient patient, including an increase in myeloid derived suppressor cells and double-negative T cells, decreased B cells, low ratio of naïve:memory T cells, and reduced capacity of T cells to secrete various cytokines following stimulation, including tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). In addition, this patient exhibited low frequency of regulatory T cells, with a reduction in their CTLA4 expression and interleukin (IL)-10 secretion. Finally, we show marked oligoclonal expansion of specific B- and T-cell clones in the peripheral blood of the LRBA-deficient patient. Conclusions: LRBA deficiency is characterized by marked immunological changes in innate and adaptive immune cells. This case highlights the importance of advanced genetic studies in patients with a unique phenotype, regardless of their age at presentation.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Common Variable Immunodeficiency/genetics , DNA Mutational Analysis , Exome Sequencing , Inflammatory Bowel Diseases/genetics , Mutation , Adult , Common Variable Immunodeficiency/diagnosis , Common Variable Immunodeficiency/immunology , Common Variable Immunodeficiency/therapy , Delayed Diagnosis , Genetic Predisposition to Disease , Humans , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/therapy , Male , Phenotype , Predictive Value of Tests , Time Factors
19.
Genes Immun ; 21(5): 326-334, 2020 11.
Article in English | MEDLINE | ID: mdl-32921793

ABSTRACT

Mutations in the common gamma chain of the interleukin 2 receptor (IL2RG) or the associated downstream signaling enzyme Janus kinase 3 (JAK3) genes are typically characterized by a T cell-negative, B cell-positive, natural killer (NK) cell-negative (T-B+NK-) severe combined immunodeficiency (SCID) immune phenotype. We report clinical course, immunological, genetic and proteomic work-up of two patients with different novel mutations in the IL-2-JAK3 pathway with a rare atypical presentation of T-B+NK- SCID. Lymphocyte subpopulation revealed significant T cells lymphopenia, normal B cells, and NK cells counts (T-B+NK+SCID). Despite the presence of B cells, IgG levels were low and IgA and IgM levels were undetectable. T-cell proliferation in response to mitogens in patient 1 was very low and T-cell receptor V-beta chain repertoire in patient 2 was polyclonal. Whole-exome sequencing revealed novel mutations in both patients (patient 1-c.923delC frame-shift mutation in the IL2RG gene, patient 2-c.G172A a homozygous missense mutation in the JAK3 gene). Bioinformatic analysis of the JAK3 mutation indicated deleterious effect and 3D protein modeling located the mutation to a surface exposed alpha-helix structure. Our findings help to link between genotype and phenotype, which is a key factor for the diagnosis and treatment of SCID patients.


Subject(s)
Interleukin Receptor Common gamma Subunit/genetics , Janus Kinase 3/genetics , Phenotype , Severe Combined Immunodeficiency/genetics , Female , Humans , Infant , Janus Kinase 3/chemistry , Male , Mutation , Pedigree , Protein Conformation, alpha-Helical , Severe Combined Immunodeficiency/pathology
20.
Pediatr Blood Cancer ; 67(6): e28237, 2020 06.
Article in English | MEDLINE | ID: mdl-32277798

ABSTRACT

BACKGROUND: The SRP54 (signal recognition protein 54) is a conserved component of the ribonucleoprotein complex that mediates cotranslational targeting and translocation of proteins to the endoplasmic reticulum. In 2017, mutations in the gene have been described as a cause of congenital neutropenia with or without pancreatic insufficiency, and since then, only limited cases were added to the literature. METHODS: Two patients with neutropenia underwent hematological, immunological, and genetic work-up, including lymphocyte phenotyping, immunoglobulins, and complement levels, antineutrophil and antinuclear antibodies, bone marrow FISH panel for myelodysplastic syndrome, whole-exome sequencing, and in silico proteomic analysis. RESULTS: Clinical findings in the two families revealed a wide spectrum of immunological and clinical manifestations, ranging from mild asymptomatic neutropenia during febrile illnesses to severe neutropenia and life-threatening infection requiring leg amputation. Immunological and hematological work-up showed isolated neutropenia with normal lymphocyte subpopulations, immunoglobulin and complement levels, and negative autoimmune tests. Bone marrow aspirations showed variability ranging from normal myelopoiesis to myeloid maturation arrest at the promyelocytic stage, with normal FISH panel for myelodysplastic syndrome. Genetic analysis identified a novel, de novo, in-frame deletion in the SRP54 gene, c.342-344delAAC, p.T115del. In silico proteomic analysis suggested impaired SRP54 protein function due to reduced GTP activity and stability. CONCLUSIONS: We describe congenital neutropenia with variable clinical presentation in novel mutation of the SRP54 gene.


Subject(s)
Mutation , Neutropenia/congenital , Neutropenia/pathology , Signal Recognition Particle/genetics , Child, Preschool , Female , Humans , Infant , Male , Neutropenia/genetics , Neutropenia/metabolism , Pedigree , Prognosis , Proteomics , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...