Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 113
Filter
1.
J Clin Immunol ; 44(3): 63, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363399

ABSTRACT

Inflammatory bowel disease (IBD) occurring following allogeneic stem cell transplantation (aSCT) is a very rare condition. The underlying pathogenesis needs to be better defined. There is currently no systematic effort to exclude loss- or gain-of-function mutations in immune-related genes in stem cell donors. This is despite the fact that more than 100 inborn errors of immunity may cause or contribute to IBD. We have molecularly characterized a patient who developed fulminant inflammatory bowel disease following aSCT with stable 100% donor-derived hematopoiesis. A pathogenic c.A291G; p.I97M HAVCR2 mutation encoding the immune checkpoint protein TIM-3 was identified in the patient's blood-derived DNA, while being absent in DNA derived from the skin. TIM-3 expression was much decreased in the patient's serum, and in vitro-activated patient-derived T cells expressed reduced TIM-3 levels. In contrast, T cell-intrinsic CD25 expression and production of inflammatory cytokines were preserved. TIM-3 expression was barely detectable in the immune cells of the patient's intestinal mucosa, while being detected unambiguously in the inflamed and non-inflamed colon from unrelated individuals. In conclusion, we report the first case of acquired, "transplanted" insufficiency of the regulatory TIM-3 checkpoint linked to post-aSCT IBD.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Inflammatory Bowel Diseases , Stem Cell Transplantation , Humans , Cytokines/metabolism , Hepatitis A Virus Cellular Receptor 2/genetics , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/etiology , Intestinal Mucosa , Stem Cell Transplantation/adverse effects
2.
Immun Inflamm Dis ; 11(12): e1106, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38156376

ABSTRACT

BACKGROUND: Patients with immunodeficiencies commonly experience diagnostic delays resulting in morbidity. There is an unmet need to identify patients earlier, especially those with high risk for complications. Compared to immunoglobulin quantification and flowcytometric B cell subset analysis, expanded T cell subset analysis is rarely performed in the initial evaluation of patients with suspected immunodeficiency. The simultaneous interpretation of multiple immune variables, including lymphocyte subsets, is challenging. OBJECTIVE: To evaluate the diagnostic value of cluster analyses of immune variables in patients with suspected immunodeficiency. METHODS: Retrospective analysis of 38 immune system variables, including seven B cell and sixteen T cell subpopulations, in 107 adult patients (73 with immunodeficiency, 34 without) evaluated at a tertiary outpatient immunology clinic. Correlation analyses of individual variables, k-means cluster analysis with evaluation of the classification into "no immunodeficiency" versus "immunodeficiency" and visual analyses of hierarchical heatmaps were performed. RESULTS: Binary classification of patients into groups with and without immunodeficiency was correct in 54% of cases with the full data set and increased to 69% and 75% of cases, respectively, when only 16 variables with moderate (p < .05) or 7 variables with strong evidence (p < .01) for a difference between groups were included. In a cluster heatmap with all patients but only moderately differing variables and a heatmap with only immunodeficient patients restricted to T cell variables alone, segregation of most patients with common variable immunodeficiency and combined immunodeficiency was observed. CONCLUSION: Cluster analyses of immune variables, including detailed lymphocyte flowcytometry with T cell subpopulations, may support clinical decision making for suspected immunodeficiency in daily practice.


Subject(s)
Common Variable Immunodeficiency , T-Lymphocyte Subsets , Adult , Humans , Immunophenotyping , Retrospective Studies , B-Lymphocytes
4.
RMD Open ; 9(3)2023 07.
Article in English | MEDLINE | ID: mdl-37460275

ABSTRACT

OBJECTIVES: We evaluated the feasibility of a rapid glucocorticoid tapering regimen to reduce glucocorticoid exposure in patients with giant cell arteritis (GCA) treated with glucocorticoids only. METHODS: Newly diagnosed patients with GCA treated with a planned 26-week glucocorticoid tapering regimen at the University Hospital Basel were included. Data on relapses, cumulative steroid doses (CSD) and therapy-related adverse effects were collected from patients' records. RESULTS: Of 47 patients (64% women, median age 72 years), 32 patients (68%) had relapsed. Most relapses were minor (28/32) and 2/3 of those were isolated increased inflammatory markers (19/32). Among major relapses, one resulted in permanent vision loss. The median time until relapse was 99 days (IQR 71-127) and median glucocorticoid dose at relapse was 8 mg (IQR 5-16). Nine of 47 patients stopped glucocorticoids after a median duration of 35 weeks and did not relapse within 1 year. Median CSD at 12 months was 4164 mg which is lower compared with published data. Glucocorticoid-associated adverse effects occurred in 40% of patients, most frequently were new onset or worsening hypertension (19%), diabetes (11%) and severe infections (11%). CONCLUSION: We could demonstrate that 32% of patients remained relapse-free and 19% off glucocorticoids at 1 year after treatment with a rapid glucocorticoid tapering regimen. Most relapses were minor and could be handled with temporarily increased glucocorticoid doses. Consequently, the CSD at 12 months was much lower than reported in published cohorts. Thus, further reducing treatment-associated damage in patients with GCA by decreasing CSD seems to be possible.


Subject(s)
Diabetes Mellitus , Giant Cell Arteritis , Humans , Female , Aged , Male , Glucocorticoids/adverse effects , Giant Cell Arteritis/diagnosis , Giant Cell Arteritis/drug therapy , Giant Cell Arteritis/complications , Cohort Studies , Chronic Disease
5.
J Clin Immunol ; 43(8): 1840-1856, 2023 11.
Article in English | MEDLINE | ID: mdl-37477760

ABSTRACT

Mutations in CD46 predispose to atypical hemolytic uremic syndrome (aHUS) with low penetrance. Factors driving immune-dysregulatory disease in individual mutation carriers have remained ill-understood. In addition to its role as a negative regulator of the complement system, CD46 modifies T cell-intrinsic metabolic adaptation and cytokine production. Comparative immunologic analysis of diseased vs. healthy CD46 mutation carriers has not been performed in detail yet. In this study, we comprehensively analyzed clinical, molecular, immune-phenotypic, cytokine secretion, immune-metabolic, and genetic profiles in healthy vs. diseased individuals carrying a rare, heterozygous CD46 mutation identified within a large single family. Five out of six studied individuals carried a CD46 gene splice-site mutation causing an in-frame deletion of 21 base pairs. One child suffered from aHUS and his paternal uncle manifested with adult-onset systemic lupus erythematosus (SLE). Three mutation carriers had no clinical evidence of CD46-related disease to date. CD4+ T cell-intrinsic CD46 expression was uniformly 50%-reduced but was comparable in diseased vs. healthy mutation carriers. Reconstitution experiments defined the 21-base pair-deleted CD46 variant as intracellularly-but not surface-expressed and haploinsufficient. Both healthy and diseased mutation carriers displayed reduced CD46-dependent T cell mitochondrial adaptation. Diseased mutation carriers had lower peripheral regulatory T cell (Treg) frequencies and carried potentially epistatic, private rare variants in other inborn errors of immunity (IEI)-associated proinflammatory genes, not found in healthy mutation carriers. In conclusion, low Treg and rare non-CD46 immune-gene variants may contribute to clinically manifest CD46 haploinsufficiency-associated immune-dysregulation.


Subject(s)
Family , Haploinsufficiency , Adult , Child , Humans , Health Status , Heterozygote , Cytokines , Membrane Cofactor Protein/genetics
6.
J Allergy Clin Immunol ; 152(2): 500-516, 2023 08.
Article in English | MEDLINE | ID: mdl-37004747

ABSTRACT

BACKGROUND: Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVES: This study explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS: Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T-cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type versus mutant LIG4 were performed in LIG4 knockout Jurkat T cells, and DNA damage tolerance was subsequently assessed. RESULTS: A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia, and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naive CD4+ T cells and low TCR-Vα7.2+ T cells, while T-/B-cell receptor repertoires showed only mild alterations. Cohort screening identified 2 other nonrelated patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T-cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSIONS: This study provides evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency.


Subject(s)
DNA Ligases , Immunologic Deficiency Syndromes , Humans , DNA Ligases/genetics , Autoimmunity/genetics , Haploinsufficiency , DNA Ligase ATP/genetics , Immunologic Deficiency Syndromes/genetics , Mutation , DNA
7.
Front Immunol ; 14: 1087502, 2023.
Article in English | MEDLINE | ID: mdl-36817454

ABSTRACT

Vaccines against SARS-CoV-2 are the most effective measure against the COVID-19 pandemic. The safety profile of mRNA vaccines in patients with rare diseases has not been assessed systematically in the clinical trials, as these patients were typically excluded. This report describes the occurrence of agranulocytosis within days following the first dose of an mRNA-1273 vaccination against COVID-19 in a previously healthy older adult. The patient was diagnosed with a suspected STAT3 wild-type T-cell large granular lymphocytic leukaemia (T-LGL). Neutropenia was successfully treated with IVIG, glucocorticoids, and G-CSF. In vitro experiments aimed at elucidating the pathways potentially causing the mRNA vaccine-associated neutropenia indicated that the mRNA, but not the adenoviral Ad26.COV2.S vector vaccine, triggered strong IL-6/STAT3 activation in vitro, resulting in excessive T-cell activation and neutrophil degranulation in the patient but not in controls. mRNA-1273 activated TLR-3 suggesting TLR mediated IL-6/STAT3 pathway activation. To complete the primary series of COVID-19 immunization, we used a single dose of Ad26.COV2.S vector vaccine without reoccurrence of neutropenia. The T-LGL clone remained stable during the follow-up of more than 12 months without ongoing therapy. Our data suggest that switching the immunization platform may be a reasonable approach in subjects with rare associated hematologic side effects due to excess STAT3-mediated stimulation following mRNA vaccination. Using in vitro testing before re-administration of a (COVID) vaccine also has relevance for other rare immune events after (mRNA) vaccination.


Subject(s)
COVID-19 , Leukemia, Large Granular Lymphocytic , Neutropenia , Humans , Aged , 2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , COVID-19 Vaccines , Interleukin-6 , Pandemics , SARS-CoV-2 , Vaccination , Adenoviridae , STAT3 Transcription Factor
8.
J Clin Immunol ; 43(2): 391-405, 2023 02.
Article in English | MEDLINE | ID: mdl-36308663

ABSTRACT

PURPOSE: Binding of the B cell activating factor (BAFF) to its receptor (BAFFR) activates in mature B cells many essential pro-survival functions. Null mutations in the BAFFR gene result in complete BAFFR deficiency and cause a block in B cell development at the transition from immature to mature B cells leading therefore to B lymphopenia and hypogammaglobulinemia. In addition to complete BAFFR deficiency, single nucleotide variants encoding BAFFR missense mutations were found in patients suffering from common variable immunodeficiency (CVID), autoimmunity, or B cell lymphomas. As it remained unclear to which extent such variants disturb the activity of BAFFR, we performed genetic association studies and developed a cellular system that allows the unbiased analysis of BAFFR variants regarding oligomerization, signaling, and ectodomain shedding. METHODS: In addition to genetic association studies, the BAFFR variants P21R, A52T, G64V, DUP92-95, P146S, and H159Y were expressed by lentiviral gene transfer in DG-75 Burkitt's lymphoma cells and analyzed for their impacts on BAFFR function. RESULTS: Binding of BAFF to BAFFR was affected by P21R and A52T. Spontaneous oligomerization of BAFFR was disturbed by P21R, A52T, G64V, and P146S. BAFF-dependent activation of NF-κB2 was reduced by P21R and P146S, while interactions between BAFFR and the B cell antigen receptor component CD79B and AKT phosphorylation were impaired by P21R, A52T, G64V, and DUP92-95. P21R, G64V, and DUP92-95 interfered with phosphorylation of ERK1/2, while BAFF-induced shedding of the BAFFR ectodomain was only impaired by P21R. CONCLUSION: Although all variants change BAFFR function and have the potential to contribute as modifiers to the development of primary antibody deficiencies, autoimmunity, and lymphoma, P21R is the only variant that was found to correlate positively with CVID.


Subject(s)
B-Cell Activation Factor Receptor , Common Variable Immunodeficiency , Humans , B-Cell Activating Factor/genetics , B-Cell Activating Factor/metabolism , B-Cell Activation Factor Receptor/genetics , B-Cell Activation Factor Receptor/metabolism , B-Lymphocytes , Common Variable Immunodeficiency/genetics , Common Variable Immunodeficiency/metabolism , Ligands , Signal Transduction
9.
Contemp Clin Trials Commun ; 30: 101008, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36262801

ABSTRACT

Background: Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) insufficiency and lipopolysaccharide-responsive and beige-like anchor protein (LRBA) deficiency are both complex immune dysregulation syndromes with an underlying regulatory T cell dysfunction due to the lack of CTLA-4 protein. As anticipated, the clinical phenotypes of CTLA-4 insufficiency and LRBA deficiency are similar. Main manifestations include hypogammaglobulinemia, lymphoproliferation, autoimmune cytopenia, immune-mediated respiratory, gastrointestinal, neurological, and skin involvement, which can be severe and disabling. The rationale of this clinical trial is to improve clinical outcomes of affected patients by substituting the deficient CTLA-4 by administration of CTLA4-Ig (abatacept) as a causative personalized treatment. Objectives: Our objective is to assess the safety and efficacy of abatacept for patients with CTLA-4 insufficiency or LRBA deficiency. The study will also investigate how treatment with abatacept affects the patients' quality of life. Methods: /Design: ABACHAI is a phase IIa prospective, non-randomized, open-label, single arm multi-center trial. Altogether 20 adult patients will be treated with abatacept 125 mg s.c. on a weekly basis for 12 months, including (1) patients already pretreated with abatacept, and (2) patients not pretreated, starting with abatacept therapy at the baseline study visit. For the evaluation of drug safety infection control during the trial, for efficacy, the CHAI-Morbidity Score will be used. Trial registration: The trial is registered in the German Clinical Trials Register (Deutsches Register Klinischer Studien, DRKS) with the identity number DRKS00017736, registered: 6 July 2020, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00017736.

10.
Anticancer Res ; 42(9): 4505-4509, 2022 09.
Article in English | MEDLINE | ID: mdl-36039450

ABSTRACT

BACKGROUND/AIM: We report three adult patients with primary immunodeficiency (PID) treated with reduced-intensity allogenic hematopoietic cell transplantation (HCT) with fludarabine/treosulfan conditioning and graft-versus-host disease (GvHD) prophylaxis with alemtuzumab and a calcineurin inhibitor. CASE REPORT: Patient 1, a 51-year-old male, had common variable immunodeficiency (CVID) with protein-losing enteropathy. Patient 2 was a 29-year-old woman with STAT3 (signal transducer and activator of transcription 3)-dependent hyper-IgE syndrome (HIES). Patient 3 was a 25-year-old male with XIAP (X-linked inhibitor of apoptosis)-deficiency presenting as treatment-refractory granulomatous enteropathy. Engraftment occurred in all three patients, with 100% donor chimerism in blood. Two patients survived, whereas the patient with CVID died due to infection. CONCLUSION: This series highlights issues of transplantation for PID in adults and treosulfan-based conditioning, which is feasible for PID patients; infectious complications are the major issue of concern.


Subject(s)
Busulfan , Hematopoietic Stem Cell Transplantation , Primary Immunodeficiency Diseases , Adult , Busulfan/analogs & derivatives , Busulfan/therapeutic use , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Male , Middle Aged , Primary Immunodeficiency Diseases/epidemiology
11.
Curr Rheumatol Rep ; 24(10): 293-309, 2022 10.
Article in English | MEDLINE | ID: mdl-35920952

ABSTRACT

PURPOSE OF REVIEW: To provide a comprehensive review of drugs and neoplastic, infectious, autoinflammatory, and immunodeficiency diseases causing medium- to large-vessel vasculitis in adults with emphasis on information essential for the initial diagnostic process. RECENT FINDINGS: Entities with medium- to large-vessel vasculitis as clinical manifestations have been described recently (e.g., adenosine deaminase-2 deficiency, VEXAS-Syndrome), and vasculitis in established autoinflammatory or immunodeficiency diseases is increasingly being identified. In the diagnostic process of medium- to large-vessel vasculitis in adults, a large variety of rare diseases should be included in the differential diagnosis, especially if diagnosis is made without histologic confirmation and in younger patients. Although these disorders should be considered, they will undoubtedly remain rare in daily practice.


Subject(s)
Polyarteritis Nodosa , Primary Immunodeficiency Diseases , Vasculitis , Adult , Humans , Vasculitis/diagnosis
12.
Ther Umsch ; 79(6): 301-306, 2022 Aug.
Article in German | MEDLINE | ID: mdl-35903828

ABSTRACT

Treatment of Patients with Immunodeficiency Abstract. Primary, genetically determined immunodeficiencies (PID) are caused by dysfunction of the innate and/or adaptive immune system. The majority of PID present with antibody deficiency, clinically associated with increased susceptibility to airway infections. Infections and pulmonary complications can be reduced by immunoglobulin substitution. The main practical issues of the clinical use of immunoglobulin replacement therapy are discussed here. Molecular dissection of PID is increasingly possible using next generation sequencing, enabling targeted immune modulation and immune reconstitution. This personalized immune modulation is discussed here as a seminal addition to the treatment options in patients with PID.


Subject(s)
Immunologic Deficiency Syndromes , Humans , Immunoglobulins/therapeutic use , Immunologic Deficiency Syndromes/diagnosis , Immunologic Deficiency Syndromes/drug therapy
16.
Hepatol Commun ; 6(7): 1620-1633, 2022 07.
Article in English | MEDLINE | ID: mdl-35166071

ABSTRACT

Major histocompatibility complex I (MHC-I) molecules present epitopes on the cellular surface of antigen-presenting cells to prime cytotoxic clusters of differentiation 8 (CD8)+ T cells (CTLs), which then identify and eliminate other cells such as virus-infected cells bearing the antigen. Human hepatitis virus cohort studies have previously identified MHC-I molecules as promising predictors of viral clearance. However, the underlying functional significance of these predictions is not fully understood. Here, we show that expression of single MHC-I isomers promotes virus-induced liver immunopathology. Specifically, using the lymphocytic choriomeningitis virus (LCMV) model system, we found MHC-I proteins to be highly up-regulated during infection. Deletion of one of the two MHC-I isomers histocompatibility antigen 2 (H2)-Db or H2-Kb in C57Bl/6 mice resulted in CTL activation recognizing the remaining MHC-I with LCMV epitopes in increased paucity. This increased CTL response resulted in hepatocyte death, increased caspase activation, and severe metabolic changes in liver tissue following infection with LCMV. Moreover, depletion of CTLs abolished LCMV-induced pathology in these mice with resulting viral persistence. In turn, natural killer (NK) cell depletion further increased antiviral CTL immunity and clearance of LCMV even in the presence of a single MHC-I isomer. Conclusion: Our results suggest that uniform MHC-I molecule expression promotes enhanced CTL immunity during viral infection and contributes to increased CTL-mediated liver cell damage that was alleviated by CD8 or NK cell depletion.


Subject(s)
Lymphocytic Choriomeningitis , Animals , Epitopes , Histocompatibility Antigens , Humans , Liver , Lymphocytic Choriomeningitis/genetics , Lymphocytic choriomeningitis virus/genetics , Major Histocompatibility Complex , Mice
17.
J Allergy Clin Immunol ; 149(2): 736-746, 2022 02.
Article in English | MEDLINE | ID: mdl-34111452

ABSTRACT

BACKGROUND: Heterozygous germline mutations in cytotoxic T lymphocyte-associated antigen-4 (CTLA4) impair the immunomodulatory function of regulatory T cells. Affected individuals are prone to life-threatening autoimmune and lymphoproliferative complications. A number of therapeutic options are currently being used with variable effectiveness. OBJECTIVE: Our aim was to characterize the responsiveness of patients with CTLA-4 insufficiency to specific therapies and provide recommendations for the diagnostic workup and therapy at an organ-specific level. METHODS: Clinical features, laboratory findings, and response to treatment were reviewed retrospectively in an international cohort of 173 carriers of CTLA4 mutation. Patients were followed between 2014 and 2020 for a total of 2624 months from diagnosis. Clinical manifestations were grouped on the basis of organ-specific involvement. Medication use and response were recorded and evaluated. RESULTS: Among the 173 CTLA4 mutation carriers, 123 (71%) had been treated for immune complications. Abatacept, rituximab, sirolimus, and corticosteroids ameliorated disease severity, especially in cases of cytopenias and lymphocytic organ infiltration of the gut, lungs, and central nervous system. Immunoglobulin replacement was effective in prevention of infection. Only 4 of 16 patients (25%) with cytopenia who underwent splenectomy had a sustained clinical response. Cure was achieved with stem cell transplantation in 13 of 18 patients (72%). As a result of the aforementioned methods, organ-specific treatment pathways were developed. CONCLUSION: Systemic immunosuppressants and abatacept may provide partial control but require ongoing administration. Allogeneic hematopoietic stem cell transplantation offers a possible cure for patients with CTLA-4 insufficiency.


Subject(s)
CTLA-4 Antigen/genetics , Germ-Line Mutation , Immunologic Deficiency Syndromes/therapy , Adolescent , Adult , Agammaglobulinemia/etiology , Aged , Autoimmune Diseases/etiology , CTLA-4 Antigen/deficiency , Child , Child, Preschool , Female , Genetic Association Studies , Hematopoietic Stem Cell Transplantation , Humans , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/genetics , Infant , Lung Diseases, Interstitial/etiology , Male , Middle Aged , Transplantation, Homologous , Young Adult
18.
Sci Adv ; 7(37): eabi4852, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516881

ABSTRACT

A considerable number of patients with cancer suffer from anemia, which has detrimental effects on quality of life and survival. The mechanisms underlying tumor-associated anemia are multifactorial and poorly understood. Therefore, we aimed at systematically assessing the patho-etiology of tumor-associated anemia in mice. We demonstrate that reduced red blood cell (RBC) survival rather than altered erythropoiesis is driving the development of anemia. The tumor-induced inflammatory and metabolic remodeling affect RBC integrity and augment splenic phagocyte activity promoting erythrophagocytosis. Exercise training normalizes these tumor-associated abnormal metabolic profiles and inflammation and thereby ameliorates anemia, in part, by promoting RBC survival. Fatigue was prevented in exercising tumor-bearing mice. Thus, exercise has the unique potential to substantially modulate metabolism and inflammation and thereby counteracts pathological remodeling of these parameters by the tumor microenvironment. Translation of this finding to patients with cancer could have a major impact on quality of life and potentially survival.

19.
J Autoimmun ; 124: 102714, 2021 11.
Article in English | MEDLINE | ID: mdl-34403915

ABSTRACT

BACKGROUND: Viral infections may trigger autoimmunity in genetically predisposed individuals. Immunizations mimic viral infections immunologically, but only in rare instances vaccinations coincide with the onset of autoimmunity. Inadvertent vaccine injection into periarticular shoulder tissue can cause inflammatory tissue damage ('shoulder injury related to vaccine administration, SIRVA). Thus, this accident provides a model to study if vaccine-induced pathogen-specific immunity accompanied by a robust inflammatory insult may trigger autoimmunity in specific genetic backgrounds. METHODS: We studied 16 otherwise healthy adults with suspected SIRVA occurring following a single work-related influenza immunization campaign in 2017. We performed ultrasound, immunophenotypic analyses, HLA typing, and influenza- and self-reactivity functional immunoassays. Vaccine-related bone toxicity and T cell/osteoclast interactions were assessed in vitro. FINDINGS: Twelve of the 16 subjects had evidence of inflammatory tissue damage on imaging, including bone erosions in six. Tissue damage was associated with a robust peripheral blood T and B cell activation signature and extracellular matrix-reactive autoantibodies. All subjects with erosions were HLA-DRB1*04 positive and showed extracellular matrix-reactive HLA-DRB1*04 restricted T cell responses targeting heparan sulfate proteoglycan (HSPG). Antigen-specific T cells potently activated osteoclasts via RANK/RANK-L, and the osteoclast activation marker Trap5b was high in sera of patients with an erosive shoulder injury. In vitro, the vaccine component alpha-tocopheryl succinate recapitulated bone toxicity and stimulated osteoclasts. Auto-reactivity was transient, with no evidence of progression to rheumatoid arthritis or overt autoimmune disease. CONCLUSION: Vaccine misapplication, potentially a genetic predisposition, and vaccine components contribute to SIRVA. The association with autoimmunity risk allele HLA-DRB1*04 needs to be further investigated. Despite transient autoimmunity, SIRVA was not associated with progression to autoimmune disease during two years of follow-up.


Subject(s)
Inflammation/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Joint Capsule/immunology , Orthomyxoviridae/physiology , Osteoclasts/immunology , T-Lymphocytes/immunology , Adult , Autoimmunity , Chronic Disease , Extracellular Matrix/metabolism , Female , Genetic Predisposition to Disease , HLA-DRB1 Chains/genetics , Heparan Sulfate Proteoglycans/immunology , Histocompatibility Testing , Humans , Male , Receptor Activator of Nuclear Factor-kappa B/metabolism , Tartrate-Resistant Acid Phosphatase/blood , Vaccination/adverse effects , Young Adult
20.
Front Med (Lausanne) ; 8: 613192, 2021.
Article in English | MEDLINE | ID: mdl-34249957

ABSTRACT

The pathogenesis of immune thrombocytopenia (ITP) is increasingly being elucidated, and its etiology is becoming more frequently identified, leading to a diagnostic shift from primary to secondary ITP. The overlap between autoimmunity, immunodeficiency, and cancer is evident, implying more interdisciplinarity in daily care. This mini-review is based on an expert meeting on ITP organized by the Intercontinental Cooperative ITP Study Group and presents the challenges of hematologists in understanding and investigating "out of the box" concepts associated with ITP.

SELECTION OF CITATIONS
SEARCH DETAIL
...