Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nat Med ; 29(12): 3224-3232, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38049621

ABSTRACT

Cervical cancer burden is high where prophylactic vaccination and screening coverage are low. We demonstrated in a multicenter randomized, double-blind, controlled trial that single-dose human papillomavirus (HPV) vaccination had high vaccine efficacy (VE) against persistent infection at 18 months in Kenyan women. Here, we report findings of this trial through 3 years of follow-up. Overall, 2,275 healthy women aged 15-20 years were recruited and randomly assigned to receive bivalent (n = 760), nonavalent (n = 758) or control (n = 757) vaccine. The primary outcome was incident-persistent vaccine type-specific cervical HPV infection. The primary evaluation was superiority analysis in the modified intention-to-treat (mITT) HPV 16/18 and HPV 16/18/31/33/45/52/58 cohorts. The trial met its prespecified end points of vaccine type-specific persistent HPV infection. A total of 75 incident-persistent infections were detected in the HPV 16/18 mITT cohort: 2 in the bivalent group, 1 in the nonavalent group and 72 in the control group. Nonavalent VE was 98.8% (95% CI 91.3-99.8%, P < 0.0001) and bivalent VE was 97.5% (95% CI 90.0-99.4%, P < 0.0001). Overall, 89 persistent infections were detected in the HPV 16/18/31/33/45/52/58 mITT cohort: 5 in the nonavalent group and 84 in the control group; nonavalent VE was 95.5% (95% CI 89.0-98.2%, P < 0.0001). There were no vaccine-related severe adverse events. Three years after vaccination, single-dose HPV vaccination was highly efficacious, safe and conferred durable protection. ClinicalTrials.gov no. NCT03675256 .


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Female , Humans , Human papillomavirus 16 , Human papillomavirus 18 , Kenya/epidemiology , Papillomaviridae , Papillomavirus Infections/prevention & control , Papillomavirus Vaccines/adverse effects , Persistent Infection , Uterine Cervical Neoplasms/prevention & control , Vaccination/methods , Double-Blind Method
2.
J Infect Dis ; 228(8): 1066-1070, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37353225

ABSTRACT

We evaluated the performance of rapid antigen (RAg) and antibody (RAb) microfluidic diagnostics with serial sampling of 71 participants at 6 visits over 2 months following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Rapid tests showed strong agreement with laboratory references (κAg = 81.0%; κAb = 87.8%). RAg showed substantial concordance to both virus growth in culture and PCR positivity 0-5 days since symptom onset (κAg-culture = 60.1% and κAg-PCR = 87.1%). PCR concordance to virus growth in culture was similar (κPCR-culture = 70.0%), although agreement between RAg and culture was better overall (κAg-culture = 45.5% vs κPCR-culture = 10.0%). Rapid antigen and antibody testing by microfluidic immunofluorescence platform are highly accurate for characterization of acute infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques , Microfluidics , Sensitivity and Specificity , Antibodies , Polymerase Chain Reaction
3.
J Clin Virol ; 161: 105420, 2023 04.
Article in English | MEDLINE | ID: mdl-36913789

ABSTRACT

BACKGROUND: Guidelines for SARS-CoV-2 have relied on limited data on duration of viral infectiousness and correlation with COVID-19 symptoms and diagnostic testing. METHODS: We enrolled ambulatory adults with acute SARS-CoV-2 infection and performed serial measurements of COVID-19 symptoms, nasal swab viral RNA, nucleocapsid (N) and spike (S) antigens, and replication-competent SARS-CoV-2 by viral growth in culture. We determined average time from symptom onset to a first negative test result and estimated risk of infectiousness, as defined by positive viral growth in culture. RESULTS: Among 95 adults, median [interquartile range] time from symptom onset to first negative test result was 9 [5] days, 13 [6] days, 11 [4] days, and >19 days for S antigen, N antigen, culture growth, and viral RNA by RT-PCR, respectively. Beyond two weeks, virus growth and N antigen titers were rarely positive, while viral RNA remained detectable among half (26/51) of participants tested 21-30 days after symptom onset. Between 6-10 days from symptom onset, N antigen was strongly associated with culture positivity (relative risk=7.61, 95% CI: 3.01-19.22), whereas neither viral RNA nor symptoms were associated with culture positivity. During the 14 days following symptom onset, the presence of N antigen remained strongly associated (adjusted relative risk=7.66, 95% CI: 3.96-14.82) with culture positivity, regardless of COVID-19 symptoms. CONCLUSIONS: Most adults have replication-competent SARS-CoV-2 for 10-14 after symptom onset. N antigen testing is a strong predictor of viral infectiousness and may be a more suitable biomarker, rather than absence of symptoms or viral RNA, to discontinue isolation within two weeks from symptom onset.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/diagnosis , SARS-CoV-2 , Longitudinal Studies , Diagnostic Techniques and Procedures , RNA, Viral , COVID-19 Testing
4.
NEJM Evid ; 1(5): EVIDoa2100056, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35693874

ABSTRACT

Background: Single-dose HPV vaccination, if efficacious, would be tremendously advantageous; simplifying implementation and decreasing costs. Methods: We performed a randomized, multi-center, double-blind, controlled trial of single-dose nonavalent (HPV 16/18/31/33/45/52/58/6/11) or bivalent (HPV 16/18) HPV vaccination compared to meningococcal vaccination among Kenyan women aged 15-20 years. Enrollment and six monthly cervical swabs and a month three vaginal swab were tested for HPV DNA. Enrollment sera were tested for HPV antibodies. The modified intent-to-treat (mITT) cohort comprised participants who tested HPV antibody negative at enrollment and HPV DNA negative at enrollment and month three. The primary outcome was incident persistent vaccine-type HPV infection by month 18. Results: Between December 2018 and June 2021, 2,275 women were randomly assigned and followed; 758 received the nonavalent HPV vaccine, 760 the bivalent HPV vaccine, and 757 the meningococcal vaccine; retention was 98%. Thirty-eight incident persistent infections were detected in the HPV 16/18 mITT cohort: one each among participants assigned to the bivalent and nonavalent groups and 36 among those assigned to the meningococcal group; nonavalent Vaccine Efficacy (VE) was 97.5% (95%CI 81.7-99.7%, p=<0.0001), and bivalent VE was 97.5% (95%CI 81.6-99.7%, p=<0.0001). Thirty-three incident persistent infections were detected in the HPV 16/18/31/33/45/52/58 mITT cohort: four in the nonavalent group and 29 in the meningococcal group; nonavalent VE for HPV 16/18/31/33/45/52/58 was 88.9% (95%CI 68.5-96.1%, p<0.0001). The rate of SAEs was 4.5-5.2% by group. Conclusions: Over the 18 month time-frame we studied, single-dose bivalent and nonavalent HPV vaccines were each highly effective in preventing incident persistent oncogenic HPV infection, similar to multidose regimens.

5.
Int J Infect Dis ; 117: 287-294, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35149246

ABSTRACT

OBJECTIVES: This study assesses and compares the performance of different swab types and specimen collection sites for SARS-CoV-2 testing, to reference standard real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and viral culture. METHODS: Symptomatic adults with COVID-19 who visited routine COVID-19 testing sites used spun polyester and FLOQSwabs to self-collect specimens from the anterior nares and tongue. We evaluated the self-collected specimen from anterior nares and tongue swabs for the nucleocapsid (N) or spike (S) antigen of SARS-CoV-2 by RT-PCR and then compared these results with results from RT-PCR and viral cultures from nurse-collected nasopharyngeal swabs. RESULTS: Diagnostic sensitivity was highest for RT-PCR testing conducted using specimens from the anterior nares collected on FLOQSwabs (84%; 95% CI 68-94%) and spun polyester swabs (82%; 95% CI 66-92%), compared to RT-PCR tests conducted using specimens from nasopharyngeal swabs. Relative to viral culture from nasopharyngeal swabs, diagnostic sensitivities were higher for RT-PCR and antigen testing of anterior nares swabs (91-100%) than that of tongue swabs (18-81%). Antigen testing of anterior nares swabs had higher sensitivities against viral culture (91%) than against nasopharyngeal RT-PCR (38-70%). All investigational tests had high specificity compared with nasopharyngeal RT-PCR. Spun polyester swabs are equally effective as FLOQSwabs for anterior nasal RT-PCR testing. CONCLUSIONS: We found that anterior nares specimens were more sensitive than tongue swab specimens or antigen testing for detecting SARS-CoV-2 by RT-PCR. Thus, self-collected anterior nares specimens may represent an alternative method for diagnostic SARS-CoV-2 testing in some settings.


Subject(s)
COVID-19 , Nucleic Acids , Adult , COVID-19/diagnosis , COVID-19 Testing , Humans , Nasopharynx , Nucleocapsid/genetics , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity , Specimen Handling/methods , Tongue
6.
Trials ; 22(1): 661, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34579786

ABSTRACT

BACKGROUND: HPV infection is the primary cause of cervical cancer, a leading cause of cancer among women in Kenya and many sub-Saharan African countries. High coverage of HPV vaccination is a World Health Organization priority to eliminate cervical cancer globally, but vaccine supply and logistics limit widespread implementation of the current two or three dose HPV vaccine schedule. METHODS: We are conducting an individual randomized controlled trial to evaluate whether a single dose of the bivalent (HPV 16/18) or nonavalent (HPV 16/18/31/33/45/52/58/6/11) HPV vaccine prevents persistent HPV infection, a surrogate marker for precancerous lesions and cervical cancer. The primary objective is to compare the efficacy of immediate, single-dose bivalent or nonavalent vaccination with delayed HPV vaccination. Kenyan women age 15-20 years old are randomized to immediate bivalent HPV and delayed meningococcal vaccine (group 1), immediate nonavalent HPV vaccine and delayed meningococcal vaccine (group 2), or immediate meningococcal vaccine and delayed HPV vaccine (group 3) with 36 months of follow-up. The primary outcome is persistent vaccine-type HPV infection by month 18 and by month 36 for the final durability outcome. The secondary objectives include to (1) evaluate non-inferiority of antibody titers among girls and adolescents (age 9 to 14 years) from another Tanzanian study, the DoRIS Study (NCT02834637), compared to KEN SHE Study participants; (2) assess the memory B cell immune response at months 36 and 37; and (3) estimate cost-effectiveness using the trial results and health economic models. DISCUSSION: This study will evaluate single-dose HPV vaccine efficacy in Africa and has the potential to guide public health policy and increase HPV vaccine coverage. The secondary aims will assess generalizability of the trial results by evaluating immunobridging from younger ages, durability of the immune response, and the long-term health benefits and cost of single-dose HPV vaccine delivery. TRIAL REGISTRATION: ClinicalTrials.gov NCT03675256 . Registered on September 18, 2018.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Uterine Cervical Neoplasms , Adolescent , Child , Female , Human papillomavirus 16 , Human papillomavirus 18 , Humans , Kenya , Papillomavirus Infections/prevention & control , Randomized Controlled Trials as Topic , Uterine Cervical Neoplasms/prevention & control , Vaccination , Young Adult
7.
J Clin Microbiol ; 59(11): e0092121, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34379531

ABSTRACT

We report that there is a recent global expansion of numerous independent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with mutation L452R in the receptor-binding domain (RBD) of the spike protein. The massive emergence of L452R variants was first linked to lineage B.1.427/B.1.429 (clade 21C) that has been spreading in California since November and December 2020, originally named CAL.20C and currently variant of interest epsilon. By PCR amplification and Sanger sequencing of a 541-base fragment coding for amino acids 414 to 583 of the RBD from a collection of clinical specimens, we identified a separate L452R variant that also recently emerged in California but derives from the lineage B.1.232, clade 20A (named CAL.20A). Notably, CAL.20A caused an infection in gorillas in the San Diego Zoo, reported in January 2021. Unlike the epsilon variant that carries two additional mutations in the N-terminal domain of spike protein, L452R is the only mutation found in the spike proteins of CAL.20A. Based on genome-wide phylogenetic analysis, emergence of both viral variants was specifically triggered by acquisition of L452R, suggesting a strong positive selection for this mutation. Global analysis revealed that L452R is nearly omnipresent in a dozen independently emerged lineages, including the most recent variants of concern/interest delta, kappa, epsilon and iota, with the lambda variant carrying L452Q. L452 is in immediate proximity to the angiotensin-converting enzyme 2 (ACE2) interaction interface of RBD. It was reported that the L452R mutation is associated with immune escape and could result in a stronger cell attachment of the virus, with both factors likely increasing viral transmissibility, infectivity, and pathogenicity.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2 , Humans , Mutation , Phylogeny , Protein Binding , Spike Glycoprotein, Coronavirus/genetics
8.
bioRxiv ; 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33758861

ABSTRACT

The recent rise in mutational variants of SARS-CoV-2, especially with changes in the Spike protein, is of significant concern due to the potential ability for these mutations to increase viral infectivity, virulence and/or ability to escape protective antibodies. Here, we investigated genetic variations in a 414-583 amino acid region of the Spike protein, partially encompassing the ACE2 receptor-binding domain (RBD), across a subset of 570 nasopharyngeal samples isolated between April 2020 and February 2021, from Washington, California, Arizona, Colorado, Minnesota and Illinois. We found that samples isolated since November have an increased number of amino acid mutations in the region, with L452R being the dominant mutation. This mutation is associated with a recently discovered CAL.20C viral variant from clade 20C, lineage B.1.429, that since November-December 2020 is associated with multiple outbreaks and is undergoing massive expansion across California. In some samples, however, we found a distinct L452R-carrying variant of the virus that, upon detailed analysis of the GISAID database genomes, is also circulating primarily in California, but emerged even more recently. The newly identified variant derives from the clade 20A (lineage B.1.232) and is named CAL.20A. We also found that the SARS-CoV-2 strain that caused the only recorded case of infection in an ape - gorillas in the San Diego Zoo, reported in January 2021 - is CAL.20A. In contrast to CAL.20C that carries two additional to L452R mutations in the Spike protein, L452R is the only mutation found in CAL.20A. According to the phylogenetic analysis, however, emergence of CAL.20C was also specifically triggered by acquisition of the L452R mutation. Further analysis of GISAID-deposited genomes revealed that several independent L452R-carrying lineages have recently emerged across the globe, with over 90% of the isolates reported between December 2020 - February 2021. Taken together, these results indicate that the L452R mutation alone is of significant adaptive value to SARS-CoV-2 and, apparently, the positive selection for this mutation became particularly strong only recently, possibly reflecting viral adaptation to the containment measures or increasing population immunity. While the functional impact of L452R has not yet been extensively evaluated, leucine-452 is positioned in the receptor-binding motif of RBD, in the interface of direct contact with the ACE2 receptor. Its replacement with arginine is predicted to result in both a much stronger binding to the receptor and escape from neutralizing antibodies. If true, this in turn might lead to significantly increased infectivity of the L452R variants, warranting their close surveillance and in-depth functional studies.

10.
Clin Infect Dis ; 68(2): 334-337, 2019 01 07.
Article in English | MEDLINE | ID: mdl-29961843

ABSTRACT

We describe the rapid and ongoing emergence across multiple US cities of a new multidrug-resistant Escherichia coli clone-sequence type (ST) 1193-resistant to fluoroquinolones (100%), trimethoprim-sulfamethoxazole (55%), and tetracycline (53%). ST1193 is associated with younger adults (age <40 years) and currently comprises a quarter of fluoroquinolone-resistant clinical E. coli urine isolates.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections/microbiology , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Humans , Population Surveillance , Prevalence , Retrospective Studies , United States/epidemiology
11.
PLoS One ; 12(3): e0174132, 2017.
Article in English | MEDLINE | ID: mdl-28350870

ABSTRACT

Despite the known clonal distribution of antibiotic resistance in many bacteria, empiric (pre-culture) antibiotic selection still relies heavily on species-level cumulative antibiograms, resulting in overuse of broad-spectrum agents and excessive antibiotic/pathogen mismatch. Urinary tract infections (UTIs), which account for a large share of antibiotic use, are caused predominantly by Escherichia coli, a highly clonal pathogen. In an observational clinical cohort study of urgent care patients with suspected UTI, we assessed the potential for E. coli clonal-level antibiograms to improve empiric antibiotic selection. A novel PCR-based clonotyping assay was applied to fresh urine samples to rapidly detect E. coli and the urine strain's clonotype. Based on a database of clonotype-specific antibiograms, the acceptability of various antibiotics for empiric therapy was inferred using a 20%, 10%, and 30% allowed resistance threshold. The test's performance characteristics and possible effects on prescribing were assessed. The rapid test identified E. coli clonotypes directly in patients' urine within 25-35 minutes, with high specificity and sensitivity compared to culture. Antibiotic selection based on a clonotype-specific antibiogram could reduce the relative likelihood of antibiotic/pathogen mismatch by ≥ 60%. Compared to observed prescribing patterns, clonal diagnostics-guided antibiotic selection could safely double the use of trimethoprim/sulfamethoxazole and minimize fluoroquinolone use. In summary, a rapid clonotyping test showed promise for improving empiric antibiotic prescribing for E. coli UTI, including reversing preferential use of fluoroquinolones over trimethoprim/sulfamethoxazole. The clonal diagnostics approach merges epidemiologic surveillance, antimicrobial stewardship, and molecular diagnostics to bring evidence-based medicine directly to the point of care.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/diagnosis , Escherichia coli/drug effects , Urinary Tract Infections/diagnosis , Anti-Bacterial Agents/classification , Bacterial Typing Techniques/methods , Cohort Studies , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/genetics , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/urine , Evidence-Based Medicine , Gene Frequency , Genotype , Humans , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Sensitivity and Specificity , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Urinary Tract Infections/microbiology , Urinary Tract Infections/urine
12.
Ann Clin Microbiol Antimicrob ; 16(1): 1, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28061852

ABSTRACT

BACKGROUND: The infection and prevalence of extended-spectrum ß-lactamases (ESBLs) is a worldwide problem, and the presence of ESBLs varies between countries. In this study, we investigated the occurrence of plasmid-mediated ESBL/AmpC/carbapenemase/aminoglycoside resistance gene expression in Escherichia coli using phenotypic and genotypic techniques. METHODS: A total of 58 E. coli isolates were collected from hospitals in the city of Makkah and screened for the production of ESBL/AmpC/carbapenemase/aminoglycoside resistance genes. All samples were subjected to phenotypic and genotypic analyses. The antibiotic susceptibility of the E. coli isolates was determined using the Vitek-2 system and the minimum inhibitory concentration (MIC) assay. Antimicrobial agents tested using the Vitek 2 system and MIC assay included the expanded-spectrum (or third-generation) cephalosporins (e.g., cefoxitin, cefepime, aztreonam, cefotaxime, ceftriaxone, and ceftazidime) and carbapenems (meropenem and imipenem). Reported positive isolates were investigated using genotyping technology (oligonucleotide microarray-based assay and PCR). The genotyping investigation was focused on ESBL variants and the AmpC, carbapenemase and aminoglycoside resistance genes. E. coli was phylogenetically grouped, and the clonality of the isolates was studied using multilocus sequence typing (MLST). RESULTS: Our E. coli isolates exhibited different levels of resistance to ESBL drugs, including ampicillin (96.61%), cefoxitin (15.25%), ciprofloxacin (79.66%), cefepime (75.58%), aztreonam (89.83%), cefotaxime (76.27%), ceftazidime (81.36%), meropenem (0%) and imipenem (0%). Furthermore, the distribution of ESBL-producing E. coli was consistent with the data obtained using an oligonucleotide microarray-based assay and PCR genotyping against genes associated with ß-lactam resistance. ST131 was the dominant sequence type lineage of the isolates and was the most uropathogenic E. coli lineage. The E. coli isolates also carried aminoglycoside resistance genes. CONCLUSIONS: The evolution and prevalence of ESBL-producing E. coli may be rapidly accelerating in Saudi Arabia due to the high visitation seasons (especially to the city of Makkah). The health authority in Saudi Arabia should monitor the level of drug resistance in all general hospitals to reduce the increasing trend of microbial drug resistance and the impact on patient therapy.


Subject(s)
Aminoglycosides/pharmacology , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Escherichia coli/drug effects , Urinary Tract Infections/microbiology , beta-Lactamases/metabolism , Escherichia coli/classification , Escherichia coli/enzymology , Escherichia coli/isolation & purification , Escherichia coli Proteins/genetics , Genotype , Humans , Microbial Sensitivity Tests , Phylogeny , Saudi Arabia , beta-Lactamases/genetics
13.
Article in English | MEDLINE | ID: mdl-27790410

ABSTRACT

Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to ß-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Wall/chemistry , Hemeproteins/genetics , Hemeproteins/metabolism , Streptococcus pyogenes/genetics , Streptococcus pyogenes/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion , Drug Resistance, Bacterial , Gene Deletion , Glycosides/analysis , Heme/metabolism , Heme-Binding Proteins , N-Acetylmuramoyl-L-alanine Amidase/analysis , Peptidoglycan/analysis , Protein Binding , Protein Multimerization , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/physiology , beta-Lactams/pharmacology
14.
Open Forum Infect Dis ; 3(1): ofw002, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26925427

ABSTRACT

Background. Escherichia coli is a highly clonal pathogen. Extraintestinal isolates belong to a limited number of genetically related groups, which often exhibit characteristic antimicrobial resistance profiles. Methods. We developed a rapid clonotyping method for extraintestinal E coli based on detection of the presence or absence of 7 single nucleotide polymorphisms (SNPs) within 2 genes (fumC and fimH). A reference set of 2559 E coli isolates, primarily of urinary origin, was used to predict the resolving power of the 7-SNP-based typing method, and 582 representative strains from this set were used to evaluate test robustness. Results. Fifty-four unique SNP combinations ("septatypes") were identified in the reference strains. These septatypes yielded a clonal group resolution power on par with that of traditional multilocus sequence typing. In 72% of isolates, septatype identity predicted sequence type identity with at least 90% (mean, 97%) accuracy. Most septatypes exhibited highly distinctive antimicrobial susceptibility profiles. The 7-SNP-based test could be performed with high specificity and sensitivity using single or multiplex conventional polymerase chain reaction (PCR) and quantitative PCR. In the latter format, E coli presence and septatype identity were determined directly in urine specimens within 45 minutes with bacterial loads as low as 10(2) colony-forming units/mL and, at clinically significant bacterial loads, with 100% sensitivity and specificity. Conclusions. 7-SNP-based typing of E coli can be used for both epidemiological studies and clinical diagnostics, which could greatly improve the empirical selection of antimicrobial therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...