Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 01 24.
Article in English | MEDLINE | ID: mdl-36692286

ABSTRACT

Blocking the activity of neurons in a region of the brain involved in memory leads to cell death, which could help explain the spatiotemporal disorientation observed in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Entorhinal Cortex , Humans , Alzheimer Disease/metabolism , Neurons/physiology , Brain/metabolism , Head
2.
Curr Biol ; 31(15): 3292-3302.e6, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34146487

ABSTRACT

Not much is known about how the dentate gyrus (DG) and hippocampal CA3 networks, critical for memory and spatial processing, malfunction in Alzheimer's disease (AD). While studies of associative memory deficits in AD have focused mainly on behavior, here, we directly measured neurophysiological network dysfunction. We asked what the pattern of deterioration of different networks is during disease progression. We investigated how the associative memory-processing capabilities in different hippocampal subfields are affected by familial AD (fAD) mutations leading to amyloid-ß dyshomeostasis. Specifically, we focused on the DG and CA3, which are known to be involved in pattern completion and separation and are susceptible to pathological alterations in AD. To identify AD-related deficits in neural-ensemble dynamics, we recorded single-unit activity in wild-type (WT) and fAD model mice (APPSwe+PSEN1/ΔE9) in a novel tactile morph task, which utilizes the extremely developed somatosensory modality of mice. As expected from the sub-network regional specialization, we found that tactile changes induced lower rate map correlations in the DG than in CA3 of WT mice. This reflects DG pattern separation and CA3 pattern completion. In contrast, in fAD model mice, we observed pattern separation deficits in the DG and pattern completion deficits in CA3. This demonstration of region-dependent impairments in fAD model mice contributes to understanding of brain networks deterioration during fAD progression. Furthermore, it implies that the deterioration cannot be studied generally throughout the hippocampus but must be researched at a finer resolution of microcircuits. This opens novel systems-level approaches for analyzing AD-related neural network deficits.


Subject(s)
Alzheimer Disease , CA3 Region, Hippocampal , Dentate Gyrus , Alzheimer Disease/physiopathology , Animals , CA3 Region, Hippocampal/physiopathology , Dentate Gyrus/physiopathology , Mice
3.
Hippocampus ; 31(1): 89-101, 2021 01.
Article in English | MEDLINE | ID: mdl-32941670

ABSTRACT

Place and grid cells in the hippocampal formation are commonly thought to support a unified and coherent cognitive map of space. This mapping mechanism faces a challenge when a navigator is placed in a familiar environment that has been deformed from its original shape. Under such circumstances, many transformations could plausibly serve to map a navigator's familiar cognitive map to the deformed space. Previous empirical results indicate that the firing fields of rodent place and grid cells stretch or compress in a manner that approximately matches the environmental deformation, and human spatial memory exhibits similar distortions. These effects have been interpreted as evidence that reshaping a familiar environment elicits an analogously reshaped cognitive map. However, recent work has suggested an alternative explanation, whereby deformation-induced distortions of the grid code are attributable to a mechanism that dynamically anchors grid fields to the most recently experienced boundary, thus causing history-dependent shifts in grid phase. This interpretation raises the possibility that human spatial memory will exhibit similar history-dependent dynamics. To test this prediction, we taught participants the locations of objects in a virtual environment and then probed their memory for these locations in deformed versions of this environment. Across three experiments with variable access to visual and vestibular cues, we observed the predicted pattern, whereby the remembered locations of objects were shifted from trial to trial depending on the boundary of origin of the participant's movement trajectory. These results provide evidence for a dynamic anchoring mechanism that governs both neuronal firing and spatial memory.


Subject(s)
Grid Cells , Spatial Memory , Cues , Hippocampus , Humans , Neurons , Space Perception
4.
Neuron ; 102(5): 1009-1024.e8, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31047779

ABSTRACT

Maintaining average activity within a set-point range constitutes a fundamental property of central neural circuits. However, whether and how activity set points are regulated remains unknown. Integrating genome-scale metabolic modeling and experimental study of neuronal homeostasis, we identified mitochondrial dihydroorotate dehydrogenase (DHODH) as a regulator of activity set points in hippocampal networks. The DHODH inhibitor teriflunomide stably suppressed mean firing rates via synaptic and intrinsic excitability mechanisms by modulating mitochondrial Ca2+ buffering and spare respiratory capacity. Bi-directional activity perturbations under DHODH blockade triggered firing rate compensation, while stabilizing firing to the lower level, indicating a change in the firing rate set point. In vivo, teriflunomide decreased CA3-CA1 synaptic transmission and CA1 mean firing rate and attenuated susceptibility to seizures, even in the intractable Dravet syndrome epilepsy model. Our results uncover mitochondria as a key regulator of activity set points, demonstrate the differential regulation of set points and compensatory mechanisms, and propose a new strategy to treat epilepsy.


Subject(s)
Calcium/metabolism , Crotonates/pharmacology , Epilepsies, Myoclonic/metabolism , Hippocampus/drug effects , Mitochondria/drug effects , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Seizures/metabolism , Synapses/drug effects , Synaptic Transmission/drug effects , Toluidines/pharmacology , Animals , CA1 Region, Hippocampal/drug effects , CA1 Region, Hippocampal/metabolism , CA3 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/metabolism , Dihydroorotate Dehydrogenase , Disease Models, Animal , Disease Susceptibility , Gene Knockdown Techniques , Hippocampus/metabolism , Homeostasis , Hydroxybutyrates , Mice , Mitochondria/metabolism , Nitriles , Oxidoreductases Acting on CH-CH Group Donors/genetics , Synapses/metabolism , Synaptic Transmission/genetics
5.
Proc Natl Acad Sci U S A ; 115(38): 9628-9633, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30185558

ABSTRACT

d-serine is a physiologic coagonist of NMDA receptors, but little is known about the regulation of its synthesis and synaptic turnover. The amino acid exchangers ASCT1 (Slc1a4) and ASCT2 (Slc1a5) are candidates for regulating d-serine levels. Using ASCT1 and ASCT2 KO mice, we report that ASCT1, rather than ASCT2, is a physiologic regulator of d-serine metabolism. ASCT1 is a major d-serine uptake system in astrocytes and can also export l-serine via heteroexchange, supplying neurons with the substrate for d-serine synthesis. ASCT1-KO mice display lower levels of brain d-serine along with higher levels of l-alanine, l-threonine, and glycine. Deletion of ASCT1 was associated with neurodevelopmental alterations including lower hippocampal and striatal volumes and changes in the expression of neurodevelopmental-relevant genes. Furthermore, ASCT1-KO mice exhibited deficits in motor function, spatial learning, and affective behavior, along with changes in the relative contributions of d-serine vs. glycine in mediating NMDA receptor activity. In vivo microdialysis demonstrated lower levels of extracellular d-serine in ASCT1-KO mice, confirming altered d-serine metabolism. These alterations are reminiscent of some of the neurodevelopmental phenotypes exhibited by patients with ASCT1 mutations. ASCT1-KO mice provide a useful model for potential therapeutic interventions aimed at correcting the metabolic impairments in patients with ASCT1 mutations.


Subject(s)
Amino Acid Transport System ASC/metabolism , Brain/physiology , Cell Communication/physiology , Microcephaly/genetics , Serine/metabolism , Amino Acid Transport System ASC/genetics , Animals , Astrocytes/physiology , Brain/cytology , Brain/diagnostic imaging , Brain/embryology , Disease Models, Animal , Glycine/metabolism , HEK293 Cells , Humans , Long-Term Potentiation/physiology , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microcephaly/diagnostic imaging , Microcephaly/metabolism , Microcephaly/pathology , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Neurons/physiology , Primary Cell Culture , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...