Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cancer Res ; 83(14): 2297-2311, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37205631

ABSTRACT

Missense mutations in the DNA binding domain of p53 are characterized as structural or contact mutations based on their effect on the conformation of the protein. These mutations show gain-of-function (GOF) activities, such as promoting increased metastatic incidence compared with p53 loss, often mediated by the interaction of mutant p53 with a set of transcription factors. These interactions are largely context specific. To understand the mechanisms by which p53 DNA binding domain mutations drive osteosarcoma progression, we created mouse models, in which either the p53 structural mutant p53R172H or the contact mutant p53R245W are expressed specifically in osteoblasts, yielding osteosarcoma tumor development. Survival significantly decreased and metastatic incidence increased in mice expressing p53 mutants compared with p53-null mice, suggesting GOF. RNA sequencing of primary osteosarcomas revealed vastly different gene expression profiles between tumors expressing the missense mutants and p53-null tumors. Further, p53R172H and p53R245W each regulated unique transcriptomes and pathways through interactions with a distinct repertoire of transcription factors. Validation assays showed that p53R245W, but not p53R172H, interacts with KLF15 to drive migration and invasion in osteosarcoma cell lines and promotes metastasis in allogeneic transplantation models. In addition, analyses of p53R248W chromatin immunoprecipitation peaks showed enrichment of KLF15 motifs in human osteoblasts. Taken together, these data identify unique mechanisms of action of the structural and contact mutants of p53. SIGNIFICANCE: The p53 DNA binding domain contact mutant p53R245W, but not the structural mutant p53R172H, interacts with KLF15 to drive metastasis in somatic osteosarcoma, providing a potential vulnerability in tumors expressing p53R245W mutation.


Subject(s)
Bone Neoplasms , Osteosarcoma , Mice , Humans , Animals , Tumor Suppressor Protein p53/genetics , Osteosarcoma/pathology , Mutation , Mice, Knockout , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Transcription Factors/metabolism , DNA , Cell Line, Tumor
2.
Stem Cells Int ; 2021: 5212852, 2021.
Article in English | MEDLINE | ID: mdl-34795766

ABSTRACT

Liver diseases are major causes of morbidity and mortality. Dental pulp pluripotent-like stem cells (DPPSCs) are of a considerable promise in tissue engineering and regenerative medicine as a new source of tissue-specific cells; therefore, this study is aimed at demonstrating their ability to generate functional hepatocyte-like cells in vitro. Cells were differentiated on a collagen scaffold in serum-free media supplemented with growth factors and cytokines to recapitulate liver development. At day 5, the differentiated DPPSC cells expressed the endodermal markers FOXA1 and FOXA2. Then, the cells were derived into the hepatic lineage generating hepatocyte-like cells. In addition to the associated morphological changes, the cells expressed the hepatic genes HNF6 and AFP. The terminally differentiated hepatocyte-like cells expressed the liver functional proteins albumin and CYP3A4. In this study, we report an efficient serum-free protocol to differentiate DPPSCs into functional hepatocyte-like cells. Our approach promotes the use of DPPSCs as a new source of adult stem cells for prospective use in liver regenerative medicine.

3.
Genome Res ; 30(8): 1170-1180, 2020 08.
Article in English | MEDLINE | ID: mdl-32817165

ABSTRACT

De novo mutations (DNMs) are increasingly recognized as rare disease causal factors. Identifying DNM carriers will allow researchers to study the likely distinct molecular mechanisms of DNMs. We developed Famdenovo to predict DNM status (DNM or familial mutation [FM]) of deleterious autosomal dominant germline mutations for any syndrome. We introduce Famdenovo.TP53 for Li-Fraumeni syndrome (LFS) and analyze 324 LFS family pedigrees from four US cohorts: a validation set of 186 pedigrees and a discovery set of 138 pedigrees. The concordance index for Famdenovo.TP53 prediction was 0.95 (95% CI: [0.92, 0.98]). Forty individuals (95% CI: [30, 50]) were predicted as DNM carriers, increasing the total number from 42 to 82. We compared clinical and biological features of FM versus DNM carriers: (1) cancer and mutation spectra along with parental ages were similarly distributed; (2) ascertainment criteria like early-onset breast cancer (age 20-35 yr) provides a condition for an unbiased estimate of the DNM rate: 48% (23 DNMs vs. 25 FMs); and (3) hotspot mutation R248W was not observed in DNMs, although it was as prevalent as hotspot mutation R248Q in FMs. Furthermore, we introduce Famdenovo.BRCA for hereditary breast and ovarian cancer syndrome and apply it to a small set of family data from the Cancer Genetics Network. In summary, we introduce a novel statistical approach to systematically evaluate deleterious DNMs in inherited cancer syndromes. Our approach may serve as a foundation for future studies evaluating how new deleterious mutations can be established in the germline, such as those in TP53.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Li-Fraumeni Syndrome/genetics , Ovarian Neoplasms/genetics , Adult , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/diagnosis , Family , Female , Humans , Pedigree , Tumor Suppressor Protein p53/genetics , Young Adult
5.
Stem Cell Res Ther ; 8(1): 175, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28750661

ABSTRACT

BACKGROUND: Dental pulp represents an easily accessible autologous source of adult stem cells. A subset of these cells, named dental pulp pluripotent-like stem cells (DPPSC), shows high plasticity and can undergo multiple population doublings, making DPPSC an appealing tool for tissue repair or maintenance. METHODS: DPPSC were harvested from the dental pulp of third molars extracted from young patients. Growth factors released by DPPSC were analysed using antibody arrays. Cells were cultured in specific differentiation media and their endothelial, smooth and skeletal muscle differentiation potential was evaluated. The therapeutic potential of DPPSC was tested in a wound healing mouse model and in two genetic mouse models of muscular dystrophy (Scid/mdx and Sgcb-null Rag2-null γc-null). RESULTS: DPPSC secreted several growth factors involved in angiogenesis and extracellular matrix deposition and improved vascularisation in all three murine models. Moreover, DPPSC stimulated re-epithelialisation and ameliorated collagen deposition and organisation in healing wounds. In dystrophic mice, DPPSC engrafted in the skeletal muscle of both dystrophic murine models and showed integration in muscular fibres and vessels. In addition, DPPSC treatment resulted in reduced fibrosis and collagen content, larger cross-sectional area of type II fast-glycolytic fibres and infiltration of higher numbers of proangiogenic CD206+ macrophages. CONCLUSIONS: Overall, DPPSC represent a potential source of stem cells to enhance the wound healing process and slow down dystrophic muscle degeneration.


Subject(s)
Dental Pulp/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Animal , Pluripotent Stem Cells , Wound Healing , Adolescent , Adult , Animals , Cell Line , Female , Heterografts , Humans , Male , Mice , Mice, Inbred mdx , Mice, Nude , Mice, SCID , Muscular Dystrophy, Animal/metabolism , Muscular Dystrophy, Animal/therapy , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/transplantation
6.
BMC Cell Biol ; 18(1): 21, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28427322

ABSTRACT

BACKGROUND: Biomaterials are widely used to regenerate or substitute bone tissue. In order to evaluate their potential use for clinical applications, these need to be tested and evaluated in vitro with cell culture models. Frequently, immortalized osteoblastic cell lines are used in these studies. However, their uncontrolled proliferation rate, phenotypic changes or aberrations in mitotic processes limits their use in long-term investigations. Recently, we described a new pluripotent-like subpopulation of dental pulp stem cells derived from the third molars (DPPSC) that shows genetic stability and shares some pluripotent characteristics with embryonic stem cells. In this study we aim to describe the use of DPPSC to test biomaterials, since we believe that the biomaterial cues will be more critical in order to enhance the differentiation of pluripotent stem cells. METHODS: The capacity of DPPSC to differentiate into osteogenic lineage was compared with human sarcoma osteogenic cell line (SAOS-2). Collagen and titanium were used to assess the cell behavior in commonly used biomaterials. The analyses were performed by flow cytometry, alkaline phosphatase and mineralization stains, RT-PCR, immunohistochemistry, scanning electron microscopy, Western blot and enzymatic activity. Moreover, the genetic stability was evaluated and compared before and after differentiation by short-comparative genomic hybridization (sCGH). RESULTS: DPPSC showed excellent differentiation into osteogenic lineages expressing bone-related markers similar to SAOS-2. When cells were cultured on biomaterials, DPPSC showed higher initial adhesion levels. Nevertheless, their osteogenic differentiation showed similar trend among both cell types. Interestingly, only DPPSC maintained a normal chromosomal dosage before and after differentiation on 2D monolayer and on biomaterials. CONCLUSIONS: Taken together, these results promote the use of DPPSC as a new pluripotent-like cell model to evaluate the biocompatibility and the differentiation capacity of biomaterials used in bone regeneration.


Subject(s)
Cell Culture Techniques/methods , Chromosomal Instability/physiology , Dental Pulp/cytology , Materials Testing/methods , Molar, Third/cytology , Osteogenesis/physiology , Pluripotent Stem Cells/cytology , Adolescent , Biocompatible Materials , Cell Differentiation , Cell Line, Tumor , Cells, Cultured , Comparative Genomic Hybridization , Female , Humans , Male , Molar, Third/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/physiology , Tissue Engineering , Young Adult
7.
J Cell Sci ; 125(Pt 14): 3343-56, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22467856

ABSTRACT

Dental pulp is particularly interesting in regenerative medicine because of the accessibility and differentiation potential of the tissue. Dental pulp has an early developmental origin with multi-lineage differentiation potential as a result of its development during childhood and adolescence. However, no study has previously identified the presence of stem cell populations with embryonic-like phenotypes in human dental pulp from the third molar. In the present work, we describe a new population of dental pulp pluripotent-like stem cells (DPPSCs) that were isolated by culture in medium containing LIF, EGF and PDGF. These cells are SSEA4(+), OCT3/4(+), NANOG(+), SOX2(+), LIN28(+), CD13(+), CD105(+), CD34(-), CD45(-), CD90(+), CD29(+), CD73(+), STRO1(+) and CD146(-), and they show genetic stability in vitro based on genomic analysis with a newly described CGH technique. Interestingly, DPPSCs were able to form both embryoid-body-like structures (EBs) in vitro and teratoma-like structures that contained tissues derived from all three embryonic germ layers when injected in nude mice. We examined the capacity of DPPSCs to differentiate in vitro into tissues that have similar characteristics to mesoderm, endoderm and ectoderm layers in both 2D and 3D cultures. We performed a comparative RT-PCR analysis of GATA4, GATA6, MIXL1, NANOG, OCT3/4, SOX1 and SOX2 to determine the degree of similarity between DPPSCs, EBs and human induced pluripotent stem cells (hIPSCs). Our analysis revealed that DPPSCs, hIPSC and EBs have the same gene expression profile. Because DPPSCs can be derived from healthy human molars from patients of different sexes and ages, they represent an easily accessible source of stem cells, which opens a range of new possibilities for regenerative medicine.


Subject(s)
Dental Pulp/cytology , Induced Pluripotent Stem Cells/cytology , Molar, Third/cytology , Pluripotent Stem Cells/cytology , Adolescent , Adult , Animals , Cell Differentiation/physiology , Cell Growth Processes/physiology , Dental Pulp/metabolism , Dental Pulp/physiology , Embryoid Bodies/cytology , Female , Flow Cytometry/methods , Humans , Immunophenotyping , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Male , Mesoderm/cytology , Mice , Mice, Nude , Middle Aged , Molar, Third/metabolism , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/physiology , Transcriptome , Young Adult
9.
Trans R Soc Trop Med Hyg ; 100(12): 1151-8, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16701761

ABSTRACT

Shigella dysenteriae type 1 (Sd1) represents a particular threat in developing countries because of the severity of the infection and its epidemic potential. Antimicrobial susceptibility testing and molecular subtyping by pulsed-field gel electrophoresis (PFGE) and plasmid profiling (PP) of Sd1 isolates collected during two dysentery outbreaks (2013 and 445 cases of bloody diarrhoea) in Central African Republic (CAR) during the period 2003-2004 were reported. Eleven Sd1 comparison strains (CS) acquired by travellers or residents of Africa (n=10) or Asia (n=1) between 1993 and 2003 were also analysed. The 19 Sd1 isolates recovered from CAR outbreaks were multidrug resistant, although susceptible to quinolones and fluoroquinolones. Molecular subtyping by PFGE was more discriminatory than PP. The PFGE using XbaI and NotI restriction enzymes indicated that the two outbreaks were due to two different clones and also revealed a genetic diversity among the CS recovered from outbreak or sporadic cases between 1993 and 2003. This study was the result of a fruitful collaboration between field physicians and microbiologists. The data collected will serve as the basis for establishing long-term monitoring of Sd1 in CAR.


Subject(s)
Dysentery, Bacillary/epidemiology , Anti-Bacterial Agents/therapeutic use , Central African Republic/epidemiology , DNA, Bacterial/analysis , Disease Outbreaks , Drug Resistance, Multiple, Bacterial , Dysentery, Bacillary/drug therapy , Dysentery, Bacillary/genetics , Electrophoresis, Gel, Pulsed-Field , Female , Humans , Male , Phenotype , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL
...