Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(43): eadj2314, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37889964

ABSTRACT

The generation of attractive scaffolds for drug discovery efforts requires the expeditious synthesis of diverse analogues from readily available building blocks. This endeavor necessitates a trade-off between diversity and ease of access and is further complicated by uncertainty about the synthesizability and pharmacokinetic properties of the resulting compounds. Here, we document a platform that leverages photocatalytic N-heterocycle synthesis, high-throughput experimentation, automated purification, and physicochemical assays on 1152 discrete reactions. Together, the data generated allow rational predictions of the synthesizability of stereochemically diverse C-substituted N-saturated heterocycles with deep learning and reveal unexpected trends on the relationship between structure and properties. This study exemplifies how organic chemists can exploit state-of-the-art technologies to markedly increase throughput and confidence in the preparation of drug-like molecules.


Subject(s)
Drug Discovery , Drug Discovery/methods , Pharmacokinetics , High-Throughput Screening Assays , Chemistry Techniques, Synthetic
2.
SLAS Technol ; 27(6): 350-360, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36028206

ABSTRACT

We herein report the development of an automation platform for rapid purification and quantification of chemical libraries including reformatting of chemical matter to 10 mM DMSO stock solutions. This fully integrated workflow features tailored conditions for preparative reversed-phase (RP) HPLC-MS on microscale based on analytical data, online fraction QC and CAD-based quantification as well as automated reformatting to enable rapid purification of chemical libraries. This automated workflow is entirely solution-based, eliminating the need to weigh or handle solids. This increases process efficiency and creates a link between high-throughput synthesis and profiling of novel chemical matter with respect to biological and physicochemical properties in relevant assays.


Subject(s)
Small Molecule Libraries , Chromatography, High Pressure Liquid/methods , Automation
SELECTION OF CITATIONS
SEARCH DETAIL
...