Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Orphanet J Rare Dis ; 13(1): 20, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29370806

ABSTRACT

BACKGROUND: Spinocerebellar ataxia type 2 (SCA2) affects several neurological structures, giving rise to multiple symptoms. However, only the natural history of ataxia is well known, as measured during the study duration. We aimed to describe the progression rate of ataxia, by the Scale for the Assessment and Rating of Ataxia (SARA), as well as the progression rate of the overall neurological picture, by the Neurological Examination Score for Spinocerebellar Ataxias (NESSCA), and not only during the study duration but also in a disease duration model. Comparisons between these models might allow us to explore whether progression is linear during the disease duration in SCA2; and to look for potential modifiers. RESULTS: Eighty-eight evaluations were prospectively done on 49 symptomatic subjects; on average (SD), study duration and disease duration models covered 13 (2.16) months and 14 (6.66) years of individuals' life, respectively. SARA progressed 1.75 (CI 95%: 0.92-2.57) versus 0.79 (95% CI 0.45 to 1.14) points/year in the study duration and disease duration models. NESSCA progressed 1.45 (CI 95%: 0.74-2.16) versus 0.41 (95% CI 0.24 to 0.59) points/year in the same models. In order to explain these discrepancies, the progression rates of the study duration model were plotted against disease duration. Then an acceleration was detected after 10 years of disease duration: SARA scores progressed 0.35 before and 2.45 points/year after this deadline (p = 0.013). Age at onset, mutation severity, and presence of amyotrophy, parkinsonism, dystonic manifestations and cognitive decline at baseline did not influence the rate of disease progression. CONCLUSIONS: NESSCA and SARA progression rates were not constant during disease duration in SCA2: early phases of disease were associated with slower progressions. Modelling of future clinical trials on SCA2 should take this phenomenon into account, since disease duration might impact on inclusion criteria, sample size, and study duration. Our database is available online and accessible to future studies aimed to compare the present data with other cohorts.


Subject(s)
Spinocerebellar Ataxias/pathology , Adult , Age of Onset , Disease Progression , Female , Humans , Male , Middle Aged , Prospective Studies , Severity of Illness Index
2.
Parkinsonism Relat Disord ; 42: 54-60, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28648514

ABSTRACT

BACKGROUND: Spinocerebellar ataxia type 2 (SCA2) is due to a CAG expansion (CAGexp) at ATXN2. SCA2 presents great clinical variability, alongside characteristic ataxia with saccadic slowness. AIMS: To study parkinsonism, dementia, dystonia, and amyotrophy as subphenotypes of SCA2, and to explore the effect of CAG repeats at different loci and of mitochondrial polymorphism A10398G as modifiers of phenotype. METHODS: Symptomatic subjects were classified by presence/absence of neurological signs mentioned above; SARA and NESSCA scores were obtained. CAG repeats at ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7 and RAI1, and polymorphism A10398G at mtDNA were established. Group characteristics were compared, with a p < 0.05. RESULTS: Forty-eight SCA2 individuals were included. Age at onset, CAGexp, and disease duration explained 53% and 43% of SARA and NESSCA variations, respectively. CAGexp of subjects with and without parkinsonism were different (medians of 42 and 39 repeats) as well as of subjects with and without dystonia (44 and 40 repeats). Amyotrophy was not significantly related to any variable under study. Concerning polymorphism A10398G, 83% of subjects with and 34% of those without cognitive decline carried 10398G at (p = 0.003). DISCUSSION: Treating the four phenotypic subgroups as outcomes was a valid strategy to identify modifiers of disease. Among correlations found, some confirmed previous reports, such as that between dystonia and CAGexp. Of note was the association between cognitive decline and the variant G at mitochondrial polymorphism A10398G, a variant formerly related to earlier ages at onset in SCA2.


Subject(s)
Ataxin-2/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Genetic/genetics , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/physiopathology , Adult , Aged , Alanine/genetics , Dementia/genetics , Dementia/physiopathology , Dystonia/genetics , Dystonia/physiopathology , Female , Glycine/genetics , Humans , Male , Middle Aged , Parkinsonian Disorders/genetics , Parkinsonian Disorders/physiopathology , Phenotype , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...