Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 352: 120082, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38232595

ABSTRACT

New photoactive materials with uniform and well-defined morphologies were developed for efficient and sustainable photoelectrochemical (PEC) water splitting and hydrogen production. The investigation is focused on hydrothermal deposition of zinc oxide (ZnO) onto indium tin oxide (ITO) conductive surfaces and optimization of hydrothermal temperature for growing uniform sized 3D ZnO morphologies. Fine-tuning of hydrothermal temperature enhanced the scalability, efficiency, and performance of ZnO-decorated ITO electrodes used in PEC water splitting. Under UV light irradiation and using eco-friendly low-cost hydrothermal process in the presence of stable ZnO offered uniform 3D ZnO, which exhibited a high photocurrent of 0.6 mA/cm2 having stability up to 5 h under light-on and light-off conditions. The impact of hydrothermal temperature on the morphological properties of the deposited ZnO and its subsequent performance in PEC water splitting was investigated. The work contributes to advancement of scalable and efficient fabrication technique for developing energy converting photoactive materials.


Subject(s)
Nanostructures , Zinc Oxide , Zinc Oxide/chemistry , Water/chemistry , Nanostructures/chemistry , Tin Compounds/chemistry
2.
J Environ Manage ; 332: 117397, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36731414

ABSTRACT

The growth of advanced micro-and nanostructures with metal oxides has consistently generated extraordinary interest in energy and environmental applications. Cutting-edge nanostructures exhibit superior reactive sites and surface areas, thus improving the performance in crucial domains. In this study, sharp-edged pencil-type ZnO flowers and BiOI flakes as pristine materials, and their composition with carbon nanofibers (CNFs) (ZnO-BiOI@CNFs) as a hetero hybrid catalyst as well as binary compositions such as ZnO-BiOI, ZnO@CNFs, and BiOI@CNFs catalysts were fabricated using a simple and convenient hydrothermal synthesis process. The composition of newly produced innovative nanostructures was examined for azo dye degradation under solar simulator exposure. Dye degradation of ∼95% was achieved by the hybrid catalyst (ZnO-BiOI@CNFs) during 120 min of irradiation, which was ∼1.8 and 2.1-times higher than pristine ZnO and BiOI nanostructures, respectively. The improved hybrid catalysts were able to degrade methyl orange (MO) and rhodamine B (RhB) dyes. Importantly, mixed dyes RhB, MO, and azo dye demonstrated 47% dye degradation using a hybrid catalyst. These mixed dye-scalable hybrid catalyst performances offer additional insights into commercialization/industrialization. The outstanding performance of the hybrid catalyst is attributed to the unidirectional electron flow with pencil-like ZnO, a catalyst with a larger absorption zone, high surface area, and reactive sites, particularly ZnO and BiOI nanostructures, and decreased recombination rate with a heterojunction interface. In addition, CNFs can operate as electron traps and sinks, providing very quick redox reactions. To produce the sophisticated nanostructures with homogeneous morphologies, this work presents new insights into energy and environmental applications.


Subject(s)
Environmental Pollutants , Fabaceae , Nanofibers , Zinc Oxide , Azo Compounds , Carbon , Coloring Agents , Water
3.
J Environ Manage ; 325(Pt B): 116650, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36419312

ABSTRACT

The most appealing and prominent approach for improving energy storage and conversion performance is the development of heterojunction interfaces with efficient and unique metal oxide nanostructures. Rhombus Co3O4, nanocapsule CuO, and their heterojunction composites were synthesized using a single-step hydrothermal process. The resulting heterojunction Co3O4-CuO nanocomposite outperformed the pristine Co3O4 and CuO nanostructures for the electrochemical supercapacitor and water splitting performances. The composite showed 2.4 and 1.3 times higher specific capacitance than the associated pristine CuO and Co3O4 nanostructures, while its capacitance was 395 F g-1 at a current density of 0.5 A g-1. In addition, long-term GCD results with more than 90% stability and significant capacity retention at higher scan rates revealed the unaffected structures interfaced during the electrochemical reactions. The composite photoelectrode demonstrated more than 20% of photocurrent response with light illumination than the dark condition in water splitting. Co3O4-CuO heterostructured composite electrode showed a 0.16 mA/cm2 photocurrent density, which is 3.2 and 1.7 times higher than the pristine CuO and Co3O4 electrodes, respectively. This performance was attributed to its unique structural composition, high reactive sites, strong ion diffusion, and fast electron accessibility. Electron microscopic and spectroscopic techniques confirmed the properties of the electrodes as well as their morphological properties. Overall, the heterojunction interface with novel rhombus and capsule structured architectures showed good electrochemical performance, suggesting their energy storage and conversion applications.

4.
J Environ Manage ; 298: 113484, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34391101

ABSTRACT

Fabrication of novel metal oxide nanostructured composites is a proficient approach to develop efficient energy storage devices and development of cost-free and eco-friendly metal oxide nanostructures for supercapacitor applications received considerable attention in recent years. The Co3O4 nanocubes-NiO octahedral structured composite was constructed using facile and one-step calcination process. Cyclic voltammetry, charge-discharge, and electrochemical impedance spectral techniques have been employed to analyze the specific capacitance of the synthesized nanostructures and the composites. Specific capacitance and cycling stability of the composites were evaluated with the pristine Co3O4 and NiO nanostructures. The composite showed a specific capacitance of 832 F g-1 at a current density of 0.25 A g-1, which was ~1.5 and ~1.9-times higher than pristine Co3O4 nanocubes and NiO octahedral structure, respectively. On the other hand, electrode showed approximately 50 % capacity retention at a higher current density (5 Ag-1) because of the uniform morphology of Co3O4 and NiO. The charge-discharge stability measurements of the composite showed an admirable specific capacitance retention capability, which was 94.5 % after 2000 continuous charge-discharge cycles at a current density of 5 A g-1. The superior electrochemical performance of the nano-composite was ascribed to synergistic effects and uniform morphology. Efficient nanostructure development using facile and one-step calcination process and electrochemical performance make the synthesized composite a promising device for supercapacitor applications.


Subject(s)
Nanocomposites , Oxides , Electrochemical Techniques , Electrodes
5.
J Environ Manage ; 286: 112130, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33684804

ABSTRACT

Silver nanoparticles doped with FCNT-TiO2 heterogeneous catalyst was prepared via one-step chemical reduction process and their efficacy was tested for hydrogen production under solar simulator. Crystallinity, purity, optical properties, and morphologies of the catalysts were examined by X-Ray diffraction, Raman spectroscopy, UV-Visible diffuse reflectance spectra, and Transmission Electron Microscopy. The chemical states and interface interactions were studied by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The optimized catalyst showed 19.2 mmol g-1 h-1 of hydrogen production, which is 28.5 and 7 times higher than the pristine TiO2 nanoparticles and FCNT-TiO2 nanocomposite, respectively. The optimized catalyst showed stability up to 50 h under the solar simulator irradiation. The natural solar light irradiated catalyst showed ~2.2 times higher hydrogen production rate than the solar simulator irradiation. A plausible reaction mechanism of Ag NPs/FCNT-TiO2 photocatalyst was elucidated by investigating the beneficial co-catalytic role of Ag NPs and FCNTs for enhanced hydrogen production.


Subject(s)
Metal Nanoparticles , Silver , Catalysis , Hydrogen , Light , Titanium
7.
J Environ Manage ; 254: 109747, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31704644

ABSTRACT

The need for clean and eco-friendly energy sources has increased enormously over the years due to adverse impacts caused by the detrimental fossil fuel energy sources on the environment. This work reports the safest and most efficient route for hydrogen generation using solar light receptive functionalized carbon nanotubes-titania quantum dots (FCNT-TQDs) as photocatalysts under the influence of solar light irradiation. Predominantly, dual capability of CNT as co-catalyst and photo-sensitizer reduced the recombination rate of charge carriers, and facilitated the efficient light harvesting. The bulk production of hydrogen via water harvesting is considered, wherein photocatalyst synthesized was tuned by the optimum addition of copper to achieve higher production rate of hydrogen up to 54.4 mmol h-1g-1, nearly 25-folds higher than that of pristine TiO2 quantum dots. Addition of copper has a crucial role in improving the rate of hydrogen generation. The ternary composite exhibited 5.4-times higher hydrogen production compared to FCNT-TQDs composite.


Subject(s)
Nanotubes, Carbon , Quantum Dots , Hydrogen , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...