Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(28): 18991-19001, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37362332

ABSTRACT

ß-lactamases are enzymes that deactivate ß-lactam antibiotics through a hydrolysis mechanism. There are two known types of ß-lactamases: serine ß-lactamases (SBLs) and metallo ß-lactamases (MBLs). The two existing strategies to overcome ß-lactamase-mediated resistance are (a) to develop novel ß-lactam antibiotics that are not susceptible to hydrolysis by these enzymes; or (b) to develop ß-lactamase inhibitors that deactivate the enzyme and thereby restore the efficacy of the co-administered antibiotics. Many commercially available SBL inhibitors are used in combination therapy with antibiotics to treat antimicrobial resistant infections; however, there are only a handful of MBL inhibitors undergoing clinical trials. In this study, we present 11 novel potential MBL inhibitors (via multi-step chemical synthesis), that have shown to completely restore the efficacy of meropenem (≤2 mg L-1) against New Delhi metallo-ß-lactamase (NDM) producing Klebsiella pneumoniae in vitro. These compounds contain a cyclic amino acid zinc chelator conjugated to various commercially available ß-lactam antibiotic scaffolds with the aim to improve the overall drug transport, lipophilicity, and pharmacokinetic/pharmacodynamic properties as compared to the chelator alone. Biological evaluation of compounds 24b and 24c has further highlighted the downstream application of these MBLs, since they are non-toxic at the selected doses. Time-kill assays indicate that compounds 24b and 24c exhibit sterilizing activity towards NDM producing Klebsiella pneumoniae in vitro using minimal concentrations of meropenem. Furthermore, 24b and 24c proved to be promising inhibitors of VIM-2 (Ki = 0.85 and 1.87, respectively). This study has revealed a novel series of ß-lactam MBLIs that are potent, efficacious, and safe leads with the potential to develop into therapeutic MBLIs.

2.
Antibiotics (Basel) ; 12(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37106995

ABSTRACT

Virulent Enterobacterale strains expressing serine and metallo-ß-lactamases (MBL) genes have emerged responsible for conferring resistance to hard-to-treat infectious diseases. One strategy that exists is to develop ß-lactamase inhibitors to counter this resistance. Currently, serine ß-lactamase inhibitors (SBLIs) are in therapeutic use. However, an urgent global need for clinical metallo-ß-lactamase inhibitors (MBLIs) has become dire. To address this problem, this study evaluated BP2, a novel beta-lactam-derived ß-lactamase inhibitor, co-administered with meropenem. According to the antimicrobial susceptibility results, BP2 potentiates the synergistic activity of meropenem to a minimum inhibitory concentration (MIC) of ≤1 mg/L. In addition, BP2 is bactericidal over 24 h and safe to administer at the selected concentrations. Enzyme inhibition kinetics showed that BP2 had an apparent inhibitory constant (Kiapp) of 35.3 µM and 30.9 µM against New Delhi Metallo-ß-lactamase (NDM-1) and Verona Integron-encoded Metallo-ß-lactamase (VIM-2), respectively. BP2 did not interact with glyoxylase II enzyme up to 500 µM, indicating specific (MBL) binding. In a murine infection model, BP2 co-administered with meropenem was efficacious, observed by the >3 log10 reduction in K. pneumoniae NDM cfu/thigh. Given the promising pre-clinical results, BP2 is a suitable candidate for further research and development as an (MBLI).

3.
ACS Infect Dis ; 9(3): 486-496, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36786013

ABSTRACT

ß-lactams are the most prescribed class of antibiotics due to their potent, broad-spectrum antimicrobial activities. However, alarming rates of antimicrobial resistance now threaten the clinical relevance of these drugs, especially for the carbapenem-resistant Enterobacterales expressing metallo-ß-lactamases (MBLs). Antimicrobial agents that specifically target these enzymes to restore the efficacy of last resort ß-lactam drugs, that is, carbapenems, are therefore desperately needed. Herein, we present a cyclic zinc chelator covalently attached to a ß-lactam scaffold (cephalosporin), that is, BP1. Observations from in vitro assays (with seven MBL expressing bacteria from different geographies) have indicated that BP1 restored the efficacy of meropenem to ≤ 0.5 mg/L, with sterilizing activity occurring from 8 h postinoculation. Furthermore, BP1 was nontoxic against human hepatocarcinoma cells (IC50 > 1000 mg/L) and exhibited a potency of (Kiapp) 24.8 and 97.4 µM against Verona integron-encoded MBL (VIM-2) and New Delhi metallo ß-lactamase (NDM-1), respectively. There was no inhibition observed from BP1 with the human zinc-containing enzyme glyoxylase II up to 500 µM. Preliminary molecular docking of BP1 with NDM-1 and VIM-2 sheds light on BP1's mode of action. In Klebsiella pneumoniae NDM infected mice, BP1 coadministered with meropenem was efficacious in reducing the bacterial load by >3 log10 units' postinfection. The findings herein propose a favorable therapeutic combination strategy that restores the activity of the carbapenem antibiotic class and complements the few MBL inhibitors under development, with the ultimate goal of curbing antimicrobial resistance.


Subject(s)
Carbapenems , beta-Lactamase Inhibitors , Animals , Humans , Mice , Carbapenems/pharmacology , beta-Lactamase Inhibitors/pharmacology , Meropenem/pharmacology , Lactams , Molecular Docking Simulation , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , beta-Lactams/pharmacology , Monobactams , Zinc/pharmacology
4.
FEMS Microbiol Lett ; 3702023 01 17.
Article in English | MEDLINE | ID: mdl-36521842

ABSTRACT

The recent surge in beta-lactamase resistance has created superbugs, which pose a current and significant threat to public healthcare. This has created an urgent need to keep pace with the discovery of inhibitors that can inactivate these beta-lactamase producers. In this study, the in vitro and in vivo activity of 1,4,7-triazacyclononane-1,4,7 triacetic acid (NOTA)-a potential metallo-beta-lactamase (MBL) inhibitor was evaluated in combination with meropenem against MBL producing bacteria. Time-kill studies showed that NOTA restored the efficacy of meropenem against all bacterial strains tested. A murine infection model was then used to study the in vivo pharmacokinetics and efficacy of this metal chelator. The coadministration of NOTA and meropenem (100 mg/kg.bw each) resulted in a significant decrease in the colony-forming units of Klebsiella pneumoniae NDM-1 over an 8-h treatment period (>3 log10 units). The findings suggest that chelators, such as NOTA, hold strong potential for use as a MBL inhibitor in treating carbapenem-resistant Enterobacterale infections.


Subject(s)
Carbapenems , beta-Lactamase Inhibitors , Animals , Mice , beta-Lactamase Inhibitors/pharmacology , Meropenem/pharmacology , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Chelating Agents/pharmacology , Microbial Sensitivity Tests , beta-Lactamases
5.
Expert Opin Ther Pat ; 30(7): 541-555, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32393078

ABSTRACT

INTRODUCTION: Antibiotic resistance caused by beta-lactamase expressing bacteria poses a concern given its global dissemination and proliferation. The emergence of the metallo beta-lactamases is an indefinite health threat toward which current antibiotics have limited clinical efficacy. One solution is to develop metallo beta-lactamase inhibitors (MBLIs) capable of restoring the activity of beta-lactam drugs. AREAS COVERED: This review focuses on potential metallo beta-lactamase inhibitors that have been patented during the period of 2018-2019. The aim is to provide insight into the diverse class of compounds which exhibit a synergistic inhibitory effect on carbapenem-resistant bacteria, when co-administered with a beta-lactam antibiotic. EXPERT OPINION: The treatment strategy, of creating a broad-spectrum beta-lactamase inhibitor, is beneficial to the health sector as well as rural communities. Unfortunately, most of the inhibitors lack published data from both in vitro and in vivo evaluation, thus preventing an expert opinion on the likelihood to progress as candidates for clinical trials. From this report, the bismuth complexes, pyridinyl-nicotinamide derived sugars, boronic acid, and thiazole sulfonamide derivatives, portray promising properties for further advancement. Since there is currently no FDA approved MBLI, there remains an urgent need for the development of these combination treatment strategies.


Subject(s)
beta-Lactam Resistance/drug effects , beta-Lactamase Inhibitors/pharmacology , beta-Lactams/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Development , Drug Synergism , Humans , Patents as Topic , beta-Lactamase Inhibitors/administration & dosage , beta-Lactams/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL