Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
Fundam Clin Pharmacol ; : e12967, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968879

ABSTRACT

Physiologically based pharmacokinetic (PBPK) modelling in pregnancy is a relatively new approach that is increasingly being used to assess drug systemic exposure in pregnant women to potentially inform dosing adjustments. Physiological changes throughout pregnancy are incorporated into mathematical models to simulate drug disposition in the maternal and fetal compartments as well as the transfer of drugs across the placenta. This mini-review gathers currently available pregnancy PBPK models for drugs commonly used during pregnancy. In addition, information about the main PBPK modelling platforms used, metabolism pathways, drug transporters, data availability and drug labels were collected. The aim of this mini-review is to provide a concise overview, demonstrate trends in the field, highlight understudied areas and identify current gaps of PBPK modelling in pregnancy. Possible future applications of this PBPK approach are discussed from a clinical, regulatory and industry perspective.

2.
Infect Dis Ther ; 12(9): 2269-2287, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37751015

ABSTRACT

INTRODUCTION: We assessed effects of AZD7442 (tixagevimab/cilgavimab) on deaths from any cause or hospitalizations due to coronavirus disease 2019 (COVID-19) and symptom severity and longer-term safety in the TACKLE adult outpatient treatment study. METHODS: Participants received 600 mg AZD7442 (n = 452) or placebo (n = 451) ≤ 7 days of COVID-19 symptom onset. RESULTS: Death from any cause or hospitalization for COVID-19 complications or sequelae through day 169 (key secondary endpoint) occurred in 20/399 (5.0%) participants receiving AZD7442 versus 40/407 (9.8%) receiving placebo [relative risk reduction (RRR) 49.1%; 95% confidence interval (CI) 14.5, 69.7; p = 0.009] or 50.7% (95% CI 17.5, 70.5; p = 0.006) after excluding participants unblinded before day 169 for consideration of vaccination). AZD7442 reduced progression of COVID-19 symptoms versus placebo through to day 29 (RRR 12.5%; 95% CI 0.5, 23.0) and improved most symptoms within 1-2 weeks. Over median safety follow-up of 170 days, adverse events occurred in 174 (38.5%) and 196 (43.5%) participants receiving AZD7442 or placebo, respectively. Cardiac serious adverse events occurred in two (0.4%) and three (0.7%) participants receiving AZD7442 or placebo, respectively. CONCLUSIONS: AZD7442 was well tolerated and reduced hospitalization and mortality through 6 months, and symptom burden through 29 days, in outpatients with mild-to-moderate COVID-19. CLINICAL TRIAL REGISTRATION: Clinicaltrials.gov, NCT04723394. ( https://beta. CLINICALTRIALS: gov/study/NCT04723394 ).


Antibodies are proteins produced by the body's immune system to specifically combat foreign substances, such as viruses. Tixagevimab and cilgavimab are a pair of antibodies that bind to a specific part of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (COVID-19). When they bind to the virus, they reduce its ability to cause disease. These antibodies were tested in a clinical trial to see if they could prevent people with COVID-19 from being hospitalized or dying. Around 900 adults took part in this clinical trial. These people all had COVID-19 but were not sick enough to be in hospital. Half of this group were treated with a dose of tixagevimab and cilgavimab, given as two injections. The other half received a placebo (injections that look exactly like the tixagevimab and cilgavimab injections but contain no medicine). The study found that, over 6 months, people with COVID-19 who received tixagevimab and cilgavimab were less likely to need to go to hospital than people who received the placebo. They were also less likely to die of COVID-19. Tixagevimab and cilgavimab also helped to improve COVID-19 symptoms. People who received the antibodies saw their symptoms improve faster than people who received the placebo. They were also less likely to have symptoms that got worse. Most people felt better within 1­2 weeks of getting treatment. No safety issues were found with tixagevimab and cilgavimab compared with placebo.

3.
Cureus ; 15(7): e42328, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37614264

ABSTRACT

OBJECTIVES: Gastric cancer is a heterogeneous malignancy in terms of stage-wise prognosis. This study aimed at finding any prognostic significance of preoperative carcinoembryonic antigen (CEA) and cancer antigen (CA) 19-9 in resectable gastric cancer. METHODS: A total of 57 patients at Kidwai Memorial Institute of Oncology, Bengaluru, India from January 2022 to March 2023 were included in this observational prospective study. Included patients had a resectable tumor at clinical staging. Patients were divided into two categories (raised and non-raised) based on serum tumor marker (CEA and CA 19-9) levels. Their relationship with clinicopathological features was studied. The association was studied using chi-square test, and p-value <0.05 was considered significant. RESULTS: The mean age of the study group was 55.47 years with male predominance (63.2%, n=36). Raised CEA and CA 19-9 were seen in 15.8% (n=9) and 10.5% (n=6) patients, respectively, while both markers were raised in 5.3% (n=3). Raised CEA was found significantly associated with grade 3 adenocarcinoma stomach (OR 7.825, 95%CI: 1.374-44.562; p= 0.020) and intraoperative finding of inoperability due to occult intra-abdominal disease (p<0.05). CA 19-9 (pre- and post-operative levels) had no statistically significant association (p>0.05) with the grade of adenocarcinoma. CONCLUSION: This study indicates a benefit in estimating CEA for the prediction of prognosis in gastric cancer. CEA levels have been found to predict chances of finding occult intra-abdominal metastasis in gastric cancer.

4.
J Infect Chemother ; 29(11): 1061-1067, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37524201

ABSTRACT

INTRODUCTION: The aim of this study was to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of AZD7442 (tixagevimab/cilgavimab) in healthy Japanese adults. METHODS: In this randomized, double-blind, placebo-controlled, phase 1 study, AZD7442 was administered intramuscularly (300 or 600 mg) or intravenously (300 or 1000 mg) to healthy Japanese adults. Primary endpoints were safety, tolerability, and pharmacokinetics. Anti-drug antibodies and neutralizing antibody activities were secondary endpoints. RESULTS: A total of 40 participants were randomized to receive AZD7442 (n = 30) or placebo (n = 10). Adverse events (AEs) occurred in 12 (40%) and 3 (30%) participants, respectively; there were no deaths, serious AEs, or AEs leading to study withdrawal. Tixagevimab and cilgavimab had mean half-lives of 82.1-95.9 and 77.9-92.0 days, respectively, which were generally similar regardless of administration route. SARS-CoV-2-neutralizing antibody titers were >4-fold higher than baseline levels from Day 8 to Day 211 in participants receiving AZD7442. CONCLUSIONS: AZD7442 was well tolerated in healthy Japanese adults, with predictable pharmacokinetics and an extended half-life, consistent with previous studies. CLINICALTRIALS: gov, NCT04896541.


Subject(s)
Antiviral Agents , COVID-19 , SARS-CoV-2 , Adult , Humans , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/pharmacology , COVID-19/therapy , Double-Blind Method , East Asian People , Half-Life , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Healthy Volunteers
5.
Mol Pharm ; 20(7): 3505-3518, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37283406

ABSTRACT

Madin-Darby canine kidney (MDCK) cells are widely used to study epithelial cell functionality. Their low endogenous drug transporter protein levels make them an amenable system to investigate transepithelial permeation and drug transporter protein activity after their transfection. MDCK cells display diverse phenotypic traits, and as such, laboratory-to-laboratory variability in drug permeability assessments is observed. Consequently, in vitro-in vivo extrapolation (IVIVE) approaches using permeability and/or transporter activity data require calibration. A comprehensive proteomic quantification of 11 filter-grown parental or mock-transfected MDCK monolayers from 8 different pharmaceutical laboratories using the total protein approach (TPA) is provided. The TPA enables estimations of key morphometric parameters such as monolayer cellularity and volume. Overall, metabolic liability to xenobiotics is likely to be limited for MDCK cells due to the low expression of required enzymes. SLC16A1 (MCT1) was the highest abundant SLC transporter linked to xenobiotic activity, while ABCC4 (MRP4) was the highest abundant ABC transporter. Our data supports existing findings that claudin-2 levels may be linked to tight junction modulation, thus impacting trans-epithelial resistance. This unique database provides data on more than 8000 protein copy numbers and concentrations, thus allowing an in-depth appraisal of the control monolayers used in each laboratory.


Subject(s)
Proteome , Proteomics , Animals , Dogs , Madin Darby Canine Kidney Cells , Proteome/metabolism , Tight Junctions/metabolism , Kidney/metabolism , Carrier Proteins/metabolism
6.
Pharmaceutics ; 15(5)2023 May 20.
Article in English | MEDLINE | ID: mdl-37242793

ABSTRACT

Ethical regulations and limited paediatric participants are key challenges that contribute to a median delay of 6 years in paediatric mAb approval. To overcome these barriers, modelling and simulation methodologies have been adopted to design optimized paediatric clinical studies and reduce patient burden. The classical modelling approach in paediatric pharmacokinetic studies for regulatory submissions is to apply body weight-based or body surface area-based allometric scaling to adult PK parameters derived from a popPK model to inform the paediatric dosing regimen. However, this approach is limited in its ability to account for the rapidly changing physiology in paediatrics, especially in younger infants. To overcome this limitation, PBPK modelling, which accounts for the ontogeny of key physiological processes in paediatrics, is emerging as an alternative modelling strategy. While only a few mAb PBPK models have been published, PBPK modelling shows great promise demonstrating a similar prediction accuracy to popPK modelling in an Infliximab paediatric case study. To facilitate future PBPK studies, this review consolidated comprehensive data on the ontogeny of key physiological processes in paediatric mAb disposition. To conclude, this review discussed different use-cases for pop-PK and PBPK modelling and how they can complement each other to increase confidence in pharmacokinetic predictions.

7.
J Infect Dis ; 227(10): 1153-1163, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36683419

ABSTRACT

BACKGROUND: AZD7442 is a combination of extended half-life, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific neutralizing monoclonal antibodies (tixagevimab and cilgavimab). METHODS: This phase 1, first-in-human, randomized, double-blind, placebo-controlled, dose-escalation study evaluated AZD7442 administered intramuscularly (300 mg) or intravenously (300, 1000, or 3000 mg) in healthy adults (aged 18-55 years). The primary end point was safety and tolerability. Secondary end points included pharmacokinetics and antidrug antibodies. RESULTS: Between 18 August and 16 October 2020, a total of 60 participants were enrolled; 50 received AZD7442, and 10 received placebo. Adverse events (all of mild or moderate intensity) occurred in 26 participants (52.0%) in the AZD7442 groups and 8 (80.0%) in the placebo group. No infusion or injection site or hypersensitivity reactions occurred. Tixagevimab and cilgavimab had mean half-lives of approximately 90 days (range, 87.0-95.3 days for tixagevimab and 79.8--91.1 days for cilgavimab) and similar pharmacokinetic profiles over the 361-day study period. SARS-CoV-2-specific neutralizing antibody titers provided by AZD7442 were maintained above those in plasma from convalescent patients with coronavirus disease 2019 (COVID-19). CONCLUSIONS: AZD7442 was well tolerated in healthy adults, showing a favorable safety profile across all doses. Depending on the SARS-CoV-2 variant, pharmacokinetic analyses suggest the AZD7442 could offer protection for ≥6 months against symptomatic COVID-19 after a single 300-mg intramuscular administration. CLINICAL TRIALS REGISTRATION: NCT04507256.


Antibodies are proteins produced by the body in response to infections caused by microbes, including viruses. AZD7442 is a combination of 2 human antibodies, with an extended duration of effect, sourced from people who had recovered from coronavirus disease 2019 (COVID-19). These antibodies recognize a specific part (spike protein) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, and prevent the virus from infecting cells in the body. The current study evaluated the safety of AZD7442 in healthy volunteers. Sixty adults were given AZD7442 or placebo (salt solution) as injections into the muscle (300-mg dose) or infusions into a vein (300­3000-mg doses). The study did not find any safety issues with AZD7442, including at the highest dose. AZD7442 was measured in the blood 12 months after dosing, suggesting a long duration of protection. Following this study, AZD7442 was tested in larger clinical trials to investigate its potential in preventing and treating COVID-19. AZD7442 is currently authorized as treatment for outpatients with COVID-19 and as a preventive drug in people who may not respond well to COVID-19 vaccines and need additional protection (eg, those taking medications that dampen the immune system).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adult , Half-Life , Antibodies, Monoclonal , Antibodies, Neutralizing , Double-Blind Method , Antibodies, Viral
8.
Br J Clin Pharmacol ; 89(1): 158-186, 2023 01.
Article in English | MEDLINE | ID: mdl-33226664

ABSTRACT

AIMS: The storm-like nature of the health crises caused by COVID-19 has led to unconventional clinical trial practices such as the relaxation of exclusion criteria. The question remains: how can we conduct diverse trials without exposing subgroups of populations to potentially harmful drug exposure levels? The aim of this study was to build a knowledge base of the effect of intrinsic/extrinsic factors on the disposition of several repurposed COVID-19 drugs. METHODS: Physiologically based pharmacokinetic (PBPK) models were used to study the change in the pharmacokinetics (PK) of drugs repurposed for COVID-19 in geriatric patients, different race groups, organ impairment and drug-drug interactions (DDIs) risks. These models were also used to predict epithelial lining fluid (ELF) exposure, which is relevant for COVID-19 patients under elevated cytokine levels. RESULTS: The simulated PK profiles suggest no dose adjustments are required based on age and race for COVID-19 drugs, but dose adjustments may be warranted for COVID-19 patients also exhibiting hepatic/renal impairment. PBPK model simulations suggest ELF exposure to attain a target concentration was adequate for most drugs, except for hydroxychloroquine, azithromycin, atazanavir and lopinavir/ritonavir. CONCLUSION: We demonstrate that systematically collated data on absorption, distribution, metabolism and excretion, human PK parameters, DDIs and organ impairment can be used to verify simulated plasma and lung tissue exposure for drugs repurposed for COVID-19, justifying broader patient recruitment criteria. In addition, the PBPK model developed was used to study the effect of age and ethnicity on the PK of repurposed drugs, and to assess the correlation between lung exposure and relevant potency values from in vitro studies for SARS-CoV-2.


Subject(s)
COVID-19 , Liver Diseases , Humans , Aged , SARS-CoV-2 , Drug Interactions , Hydroxychloroquine , Models, Biological , Pharmacokinetics , Computer Simulation
9.
CPT Pharmacometrics Syst Pharmacol ; 12(1): 122-134, 2023 01.
Article in English | MEDLINE | ID: mdl-36382697

ABSTRACT

Combination therapy or concomitant drug administration can be associated with pharmacokinetic drug-drug interactions, increasing the risk of adverse drug events and reduced drug efficacy. Thus far, machine-learning models have been developed that can classify drug-drug interactions. However, to enable quantification of the pharmacokinetic effects of a drug-drug interaction, regression-based machine learning should be explored. Therefore, this study investigated the use of regression-based machine learning to predict changes in drug exposure caused by pharmacokinetic drug-drug interactions. Fold changes in exposure relative to substrate drug monotherapy were collected from 120 clinical drug-drug interaction studies extracted from the Washington Drug Interaction Database and SimCYP compound library files. Drug characteristics (features) were collected such as structure, physicochemical properties, in vitro pharmacokinetic properties, cytochrome P450 metabolic activity, and population characteristics. Three different regression-based supervised machine-learning models were then applied to the prediction task: random forest, elastic net, and support vector regressor. Model performance was evaluated using fivefold cross-validation. Strongest performance was observed with support vector regression, with 78% of predictions within twofold of the observed exposure changes. The results show that changes in drug exposure can be predicted with reasonable accuracy using regression-based machine-learning models trained on data available early in drug discovery. This has potential applications in enabling earlier drug-drug interaction risk assessment for new drug candidates.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Humans , Drug Interactions , Pharmaceutical Preparations , Machine Learning , Databases, Pharmaceutical
10.
CPT Pharmacometrics Syst Pharmacol ; 11(12): 1560-1568, 2022 12.
Article in English | MEDLINE | ID: mdl-36176050

ABSTRACT

The gold-standard approach for modeling pharmacokinetic mediated drug-drug interactions is the use of physiologically-based pharmacokinetic modeling and population pharmacokinetics. However, these models require extensive amounts of drug-specific data generated from a wide variety of in vitro and in vivo models, which are later refined with clinical data and system-specific parameters. Machine learning has the potential to be utilized for the prediction of drug-drug interactions much earlier in the drug discovery cycle, using inputs derived from, among others, chemical structure. This could lead to refined chemical designs in early drug discovery. Machine-learning models have many advantages, such as the capacity to automate learning (increasing the speed and scalability of predictions), improved generalizability by learning from multicase historical data, and highlighting statistical and potentially clinically significant relationships between input variables. In contrast, the routinely used mechanistic models (physiologically-based pharmacokinetic models and population pharmacokinetics) are currently considered more interpretable, reliable, and require a smaller sample size of data, although insights differ on a case-by-case basis. Therefore, they may be appropriate for later stages of drug-drug interaction assessment when more in vivo and clinical data are available. A combined approach of using mechanistic models to highlight features that can be used for training machine-learning models may also be exploitable in the future to improve the performance of machine learning. In this review, we provide concepts, strategic considerations, and compare machine learning to mechanistic modeling for drug-drug interaction risk assessment across the stages of drug discovery and development.


Subject(s)
Machine Learning , Models, Biological , Humans , Drug Interactions , Drug Discovery , Pharmacokinetics
11.
Clin Pharmacol Ther ; 112(6): 1207-1213, 2022 12.
Article in English | MEDLINE | ID: mdl-35797235

ABSTRACT

AZD7442 (Evusheld) is a combination of two human anti-severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs), tixagevimab (AZD8895) and cilgavimab (AZD1061). Route of administration is an important consideration to improve treatment access. We assessed pharmacokinetics (PKs) of AZD7442 absorption following 600 mg administered intramuscularly (i.m.) in the thigh compared with 300 mg intravenously (i.v.) in ambulatory adults with symptomatic COVID-19. PK analysis included 84 of 110 participants randomized to receive i.m. AZD7442 and 16 of 61 randomized to receive i.v. AZD7442. Serum was collected prior to AZD7442 administration and at 24 hours and 3, 7, and 14 days later. PK parameters were calculated using noncompartmental methods. Following 600 mg i.m., the geometric mean maximum concentration (Cmax ) was 38.19 µg/mL (range: 17.30-60.80) and 37.33 µg/mL (range: 14.90-58.90) for tixagevimab and cilgavimab, respectively. Median observed time to maximum concentration (Tmax ) was 7.1 and 7.0 days for tixagevimab and cilgavimab, respectively. Serum concentrations after i.m. dosing were similar to the i.v. dose (27-29 µg/mL each component) at 3 days. The area under the concentration-time curve (AUC)0-7d geometric mean ratio was 0.9 for i.m. vs. i.v. Participants with higher weight or body mass index were more likely to have lower concentrations with either route. Women appeared to have higher interparticipant variability in concentrations compared with men. The concentrations of tixagevimab and cilgavimab after administration i.m. to the thigh were similar to those achieved with i.v. after 3 days from dosing. Exposure in the i.m. group was 90% of i.v. over 7 days. Administration to the thigh can be considered to provide consistent mAb exposure and improve access.


Subject(s)
COVID-19 Drug Treatment , Humans , Adult , Male , Female , SARS-CoV-2 , Antibodies, Monoclonal
12.
CPT Pharmacometrics Syst Pharmacol ; 11(8): 967-990, 2022 08.
Article in English | MEDLINE | ID: mdl-35712824

ABSTRACT

Antibody-drug conjugates (ADCs) have gained traction in the oncology space in the past few decades, with significant progress being made in recent years. Although the use of pharmacometric modeling is well-established in the drug development process, there is an increasing need for a better quantitative biological understanding of the pharmacokinetic and pharmacodynamic relationships of these complex molecules. Quantitative systems pharmacology (QSP) approaches can assist in this endeavor; recent computational QSP models incorporate ADC-specific mechanisms and use data-driven simulations to predict experimental outcomes. Various modeling approaches and platforms have been developed at the in vitro, in vivo, and clinical scales, and can be further integrated to facilitate preclinical to clinical translation. These new tools can help researchers better understand the nature and mechanisms of these targeted therapies to help achieve a more favorable therapeutic window. This review delves into the world of systems pharmacology modeling of ADCs, discussing various modeling efforts in the field thus far.


Subject(s)
Immunoconjugates , Pharmacology , Humans , Immunoconjugates/pharmacokinetics , Models, Biological , Network Pharmacology
13.
Front Pharmacol ; 13: 874606, 2022.
Article in English | MEDLINE | ID: mdl-35734405

ABSTRACT

Increasing clinical data on sex-related differences in drug efficacy and toxicity has highlighted the importance of understanding the impact of sex on drug pharmacokinetics and pharmacodynamics. Intrinsic differences between males and females, such as different CYP enzyme activity, drug transporter expression or levels of sex hormones can all contribute to different responses to medications. However, most studies do not include sex-specific investigations, leading to lack of sex-disaggregated pharmacokinetic and pharmacodynamic data. Based available literature, the potential influence of sex on exposure-response relationship has not been fully explored for many drugs used in clinical practice, though population-based pharmacokinetic/pharmacodynamic modelling is well-placed to explore this effect. The aim of this review is to highlight existing knowledge gaps regarding the effect of sex on clinical outcomes, thereby proposing future research direction for the drugs with significant sex differences. Based on evaluated drugs encompassing all therapeutic areas, 25 drugs demonstrated a clinically meaningful sex differences in drug exposure (characterised by ≥ 50% change in drug exposure) and this altered PK was correlated with differential response.

14.
Sci Transl Med ; 14(635): eabl8124, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35076282

ABSTRACT

Despite the success of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there remains a need for more prevention and treatment options for individuals remaining at risk of coronavirus disease 2019 (COVID-19). Monoclonal antibodies (mAbs) against the viral spike protein have potential to both prevent and treat COVID-19 and reduce the risk of severe disease and death. Here, we describe AZD7442, a combination of two mAbs, AZD8895 (tixagevimab) and AZD1061 (cilgavimab), that simultaneously bind to distinct, nonoverlapping epitopes on the spike protein receptor binding domain to neutralize SARS-CoV-2. Initially isolated from individuals with prior SARS-CoV-2 infection, the two mAbs were designed to extend their half-lives and reduce effector functions. The AZD7442 mAbs individually prevent the spike protein from binding to angiotensin-converting enzyme 2 receptor, blocking virus cell entry, and neutralize all tested SARS-CoV-2 variants of concern. In a nonhuman primate model of SARS-CoV-2 infection, prophylactic AZD7442 administration prevented infection, whereas therapeutic administration accelerated virus clearance from the lung. In an ongoing phase 1 study in healthy participants (NCT04507256), a 300-mg intramuscular injection of AZD7442 provided SARS-CoV-2 serum geometric mean neutralizing titers greater than 10-fold above those of convalescent serum for at least 3 months, which remained threefold above those of convalescent serum at 9 months after AZD7442 administration. About 1 to 2% of serum AZD7442 was detected in nasal mucosa, a site of SARS-CoV-2 infection. Extrapolation of the time course of serum AZD7442 concentration suggests AZD7442 may provide up to 12 months of protection and benefit individuals at high-risk of COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/therapy , Drug Combinations , Half-Life , Humans , Immunization, Passive , Primates , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
15.
Clin Pharmacol Ther ; 112(4): 770-781, 2022 10.
Article in English | MEDLINE | ID: mdl-34862964

ABSTRACT

The International Consortium for Innovation and Quality (IQ) Physiologically Based Pharmacokinetic (PBPK) Modeling Induction Working Group (IWG) conducted a survey across participating companies around general strategies for PBPK modeling of induction, including experience with its utility to address various questions, regulatory interactions, and regulatory acceptance. The results highlight areas where PBPK modeling is used with high confidence and identifies opportunities where confidence is lower and further evaluation is needed. To enhance the survey results, the PBPK-IWG also collected case studies and analyzed recent literature examples where PBPK models were applied to predict CYP3A induction-mediated drug-drug interactions. PBPK modeling of induction has evolved and progressed significantly, proving to have great potential to accelerate drug discovery and development. With the aim of enabling optimal use for new molecular entities that are either substrates and/or inducers of CYP3A, the PBPK-IWG proposes initial workflows for PBPK application, discusses future trends, and identifies gaps that need to be addressed.


Subject(s)
Cytochrome P-450 CYP3A , Models, Biological , Computer Simulation , Cytochrome P-450 Enzyme System , Drug Interactions , Humans , Workflow
16.
CPT Pharmacometrics Syst Pharmacol ; 10(12): 1485-1496, 2021 12.
Article in English | MEDLINE | ID: mdl-34729944

ABSTRACT

Rifampicin induces both P-glycoprotein (P-gp) and cytochrome P450 3A4 (CYP3A4) through regulating common nuclear receptors (e.g., pregnane X receptor). The interplay of P-gp and CYP3A4 has emerged to be an important factor in clinical drug-drug interactions (DDIs) with P-gp-CYP3A4 dual substrates and requires qualitative and quantitative understanding. Although physiologically based pharmacokinetic (PBPK) modeling has become a widely accepted approach to assess DDIs and is able to reasonably predict DDIs caused by CYP3A4 induction and P-gp induction individually, the predictability of PBPK models for the effect of simultaneous P-gp and CYP3A4 induction on P-gp-CYP3A4 dual substrates remains to be systematically evaluated. In this study, we used a PBPK modeling approach for the assessment of DDIs between rifampicin and 12 drugs: three sensitive P-gp substrates, seven P-gp-CYP3A4 dual substrates, and two P-gp-CYP3A4 dual substrates and inhibitors. A 3.5-fold increase of intestinal P-gp abundance was incorporated in the PBPK models to account for rifampicin-mediated P-gp induction at steady state. The simulation results showed that accounting for P-gp induction in addition to CYP3A4 induction improved the prediction accuracy of the area under the concentration-time curve and maximum (peak) plasma drug concentration ratios compared with considering CYP3A4 induction alone. Furthermore, the interplay of relevant drug-specific parameters and its impact on the magnitude of DDIs were evaluated using sensitivity analysis. The PBPK approach described herein, in conjunction with robust in vitro and clinical data, can help in the prospective assessment of DDIs involving other P-gp and CYP3A4 dual substrates. The database reported in the present study provides a valuable aid in understanding the combined effect of P-gp and CYP3A4 induction during drug development.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/agonists , Cytochrome P-450 CYP3A Inducers/pharmacology , Models, Biological , Rifampin/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacokinetics , Computer Simulation , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inducers/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Drug Interactions , Humans
17.
J Med Chem ; 64(18): 13524-13539, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34478292

ABSTRACT

Inhibition of Mer and Axl kinases has been implicated as a potential way to improve the efficacy of current immuno-oncology therapeutics by restoring the innate immune response in the tumor microenvironment. Highly selective dual Mer/Axl kinase inhibitors are required to validate this hypothesis. Starting from hits from a DNA-encoded library screen, we optimized an imidazo[1,2-a]pyridine series using structure-based compound design to improve potency and reduce lipophilicity, resulting in a highly selective in vivo probe compound 32. We demonstrated dose-dependent in vivo efficacy and target engagement in Mer- and Axl-dependent efficacy models using two structurally differentiated and selective dual Mer/Axl inhibitors. Additionally, in vivo efficacy was observed in a preclinical MC38 immuno-oncology model in combination with anti-PD1 antibodies and ionizing radiation.


Subject(s)
Antineoplastic Agents/therapeutic use , Imidazoles/therapeutic use , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyridines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Female , Imidazoles/chemical synthesis , Male , Mice, Inbred C57BL , Mice, Nude , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins/metabolism , Pyridines/chemical synthesis , Receptor Protein-Tyrosine Kinases/metabolism , Structure-Activity Relationship , c-Mer Tyrosine Kinase/metabolism , Axl Receptor Tyrosine Kinase
18.
Sci Transl Med ; 13(607)2021 08 18.
Article in English | MEDLINE | ID: mdl-34408079

ABSTRACT

Cancers overcome replicative immortality by activating either telomerase or an alternative lengthening of telomeres (ALT) mechanism. ALT occurs in ~25% of high-risk neuroblastomas, and progression in patients with ALT neuroblastoma during or after front-line therapy is frequent and often fatal. Temozolomide + irinotecan is commonly used as salvage therapy for neuroblastoma. Patient-derived cell lines and xenografts established from patients with relapsed ALT neuroblastoma demonstrated de novo resistance to temozolomide + irinotecan [SN-38 in vitro, P < 0.05; in vivo mouse event-free survival (EFS), P < 0.0001] vs. telomerase-positive neuroblastomas. We observed that ALT neuroblastoma cells manifested constitutive ataxia-telangiectasia mutated (ATM) activation due to spontaneous telomere dysfunction which was not observed in telomerase-positive neuroblastoma cells. We demonstrated that induction of telomere dysfunction resulted in ATM activation that, in turn, conferred resistance to temozolomide + SN-38 (4.2-fold change in IC50, P < 0.001). ATM knockdown (shRNA) or inhibition using a clinical-stage small-molecule inhibitor (AZD0156) reversed resistance to temozolomide + irinotecan in ALT neuroblastoma cell lines in vitro (P < 0.001) and in four ALT xenografts in vivo (EFS, P < 0.0001). AZD0156 showed modest to no enhancement of temozolomide + irinotecan activity in telomerase-positive neuroblastoma cell lines and xenografts. Ataxia telangiectasia and Rad3 related (ATR) inhibition using AZD6738 did not enhance temozolomide + SN-38 activity in ALT neuroblastoma cells. Thus, ALT neuroblastoma chemotherapy resistance occurs via ATM activation and is reversible with ATM inhibitor AZD0156. Combining AZD0156 with temozolomide + irinotecan warrants clinical testing for neuroblastoma.


Subject(s)
Ataxia Telangiectasia , Neuroblastoma , Animals , Ataxia Telangiectasia Mutated Proteins , Drug Resistance, Neoplasm , Humans , Mice , Neoplasm Recurrence, Local , Neuroblastoma/drug therapy , Pyridines , Quinolines , Telomere , Telomere Homeostasis
19.
Commun Biol ; 4(1): 1001, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429505

ABSTRACT

Microphysiological in vitro systems are platforms for preclinical evaluation of drug effects and significant advances have been made in recent years. However, existing microfluidic devices are not yet able to deliver compounds to cell models in a way that reproduces the real physiological drug exposure. Here, we introduce a novel tumour-on-chip microfluidic system that mimics the pharmacokinetic profile of compounds on 3D tumour spheroids to evaluate their response to the treatments. We used this platform to test the response of SW620 colorectal cancer spheroids to irinotecan (SN38) alone and in combination with the ATM inhibitor AZD0156, using concentrations mimicking mouse plasma exposure profiles of both agents. We explored spheroid volume and viability as a measure of cancer cells response and changes in mechanistically relevant pharmacodynamic biomarkers (γH2AX, cleaved-caspase 3 and Ki67). We demonstrate here that our microfluidic tumour-on-chip platform can successfully predict the efficacy from in vivo studies and therefore represents an innovative tool to guide drug dose and schedules for optimal efficacy and pharmacodynamic assessment, while reducing the need for animal studies.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Irinotecan/pharmacokinetics , Pyridines/pharmacokinetics , Quinolines/pharmacokinetics , Cell Line, Tumor , Humans , Microfluidic Analytical Techniques , Spheroids, Cellular
20.
Cancer Chemother Pharmacol ; 88(3): 451-464, 2021 09.
Article in English | MEDLINE | ID: mdl-34080039

ABSTRACT

PURPOSE: Limited information is available regarding the drug-drug interaction (DDI) potential of molecular targeted agents and rituximab plus cyclophosphamide, doxorubicin (hydroxydaunorubicin), vincristine (Oncovin), and prednisone (R-CHOP) therapy. The addition of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib to R-CHOP therapy results in increased toxicity versus R-CHOP alone, including higher incidence of peripheral neuropathy. Vincristine is a substrate of P-glycoprotein (P-gp, ABCB1); drugs that inhibit P-gp could potentially cause increased toxicity when co-administered with vincristine through DDI. While the combination of the BTK inhibitor acalabrutinib and R-CHOP is being explored clinically, the DDI potential between these therapies is unknown. METHODS: A human mechanistic physiology-based pharmacokinetic (PBPK) model of vincristine following intravenous dosing was developed to predict potential DDI interactions with combination therapy. In vitro absorption, distribution, metabolism, and excretion and in vivo clinical PK parameters informed PBPK model development, which was verified by comparing simulated vincristine concentrations with observed clinical data. RESULTS: While simulations suggested no DDI between vincristine and ibrutinib or acalabrutinib in plasma, simulated vincristine exposure in muscle tissue was increased in the presence of ibrutinib but not acalabrutinib. Extrapolation of the vincristine mechanistic PBPK model to other P-gp substrates further suggested DDI risk when ibrutinib (area under the concentration-time curve [AUC] ratio: 1.8), but not acalabrutinib (AUC ratio: 0.92), was given orally with venetoclax or digoxin. CONCLUSION: Overall, these data suggest low DDI risk between acalabrutinib and P-gp substrates with negligible increase in the potential risk of vincristine-induced peripheral neuropathy when acalabrutinib is added to R-CHOP therapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Models, Biological , Peripheral Nervous System Diseases/chemically induced , Vincristine/administration & dosage , Administration, Intravenous , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Area Under Curve , Caco-2 Cells , Computer Simulation , Cyclophosphamide/administration & dosage , Cyclophosphamide/adverse effects , Cyclophosphamide/pharmacokinetics , Doxorubicin/administration & dosage , Doxorubicin/adverse effects , Doxorubicin/pharmacokinetics , Drug Interactions , Female , Humans , Male , Middle Aged , Molecular Targeted Therapy , Prednisone/administration & dosage , Prednisone/adverse effects , Prednisone/pharmacokinetics , Rituximab/administration & dosage , Rituximab/adverse effects , Rituximab/pharmacokinetics , Tissue Distribution , Vincristine/adverse effects , Vincristine/pharmacokinetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL