Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
PLoS One ; 16(6): e0251630, 2021.
Article in English | MEDLINE | ID: mdl-34181673

ABSTRACT

Approximately 15% of Colon Cancers are Microsatellite Instable (MSI). Frameshift Peptides (FPs) formed in MSI Colon Cancer are potential targets for immunotherapeutic strategies. Here we comprehensively characterize the mutational landscape of 71 MSI Colon Cancer patients from the cancer genome atlas (TCGA). We confirm that the mutations in MSI Colon Cancers are frequently frameshift deletions (23% in MSI; 1% in microsatellite stable), We find that these mutations cluster at specific locations in the genome which are mutated in up to 41% of the patients. We filter these for an adequate variant allele frequency, a sufficient mean mRNA level and the formation of a Super Neo Open Reading Frame (SNORF). Finally, we check the influence of Nonsense Mediated Decay (MMD) by comparing RNA and DNA sequencing results. Thereby we identify a set of 20 NMD-escaping Public FPs (PFPs) that cover over 90% of MSI Colon, 62.2% of MSI Endometrial and 58.8% of MSI Stomach cancer patients and 3 out of 4 Lynch patients in the TCGA-COAD. This underlines the potential for PFP directed immunotherapy, both in a therapeutic and a prophylactic setting in multiple types of MSI cancers.


Subject(s)
Colonic Neoplasms/genetics , Colonic Neoplasms/therapy , Frameshift Mutation/genetics , Microsatellite Instability/drug effects , Peptides/genetics , Colonic Neoplasms/immunology , Genome/genetics , Humans , Immunotherapy/methods , Microsatellite Repeats/genetics , Nonsense Mediated mRNA Decay/genetics , RNA, Messenger/genetics , Reading Frames/genetics
2.
Clin Dysmorphol ; 28(2): 57-62, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30614825

ABSTRACT

Stüve-Wiedemann syndrome (OMIM #601559) is a rare, autosomal recessive disorder characterized by skeletal dysplasia, consecutive infections, feeding difficulties and autonomic dysregulation. We present an Afro-Caribbean family with two siblings diagnosed with Stüve-Wiedemann syndrome. The underlying loss-of-function mutation in the leukemia inhibitory factor receptor gene is thought to impair proper functioning of the JAK/STAT 3 pathway. As this affects normal functioning of T-helper cells, these patients are prone to infections with uncommon pathogens as illustrated by this case.


Subject(s)
Exostoses, Multiple Hereditary/physiopathology , Leukemia Inhibitory Factor Receptor alpha Subunit/genetics , Osteochondrodysplasias/physiopathology , Abnormalities, Multiple/genetics , Adult , Family , Female , Humans , Infant, Newborn , Janus Kinase 3/physiology , Janus Kinases/physiology , Leukemia Inhibitory Factor Receptor alpha Subunit/physiology , Male , Mutation , Pedigree , STAT3 Transcription Factor/physiology , Siblings , Syndrome
3.
J Clin Oncol ; 36(29): 2961-2968, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30161022

ABSTRACT

PURPOSE: Lynch syndrome due to pathogenic variants in the DNA mismatch repair genes MLH1, MSH2, and MSH6 is predominantly associated with colorectal and endometrial cancer, although extracolonic cancers have been described within the Lynch tumor spectrum. However, the age-specific cumulative risk (penetrance) of these cancers is still poorly defined for PMS2-associated Lynch syndrome. Using a large data set from a worldwide collaboration, our aim was to determine accurate penetrance measures of cancers for carriers of heterozygous pathogenic PMS2 variants. METHODS: A modified segregation analysis was conducted that incorporated both genotyped and nongenotyped relatives, with conditioning for ascertainment to estimates corrected for bias. Hazard ratios (HRs) and corresponding 95% CIs were estimated for each cancer site for mutation carriers compared with the general population, followed by estimation of penetrance. RESULTS: In total, 284 families consisting of 4,878 first- and second-degree family members were included in the analysis. PMS2 mutation carriers were at increased risk for colorectal cancer (cumulative risk to age 80 years of 13% [95% CI, 7.9% to 22%] for males and 12% [95% CI, 6.7% to 21%] for females) and endometrial cancer (13% [95% CI, 7.0%-24%]), compared with the general population (6.6%, 4.7%, and 2.4%, respectively). There was no clear evidence of an increased risk of ovarian, gastric, hepatobiliary, bladder, renal, brain, breast, prostate, or small bowel cancer. CONCLUSION: Heterozygous PMS2 mutation carriers were at small increased risk for colorectal and endometrial cancer but not for any other Lynch syndrome-associated cancer. This finding justifies that PMS2-specific screening protocols could be restricted to colonoscopies. The role of risk-reducing hysterectomy and bilateral salpingo-oophorectomy for PMS2 mutation carriers needs further discussion.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Mismatch Repair Endonuclease PMS2/genetics , Neoplasms/epidemiology , Neoplasms/genetics , Penetrance , Adult , Aged , Female , Heterozygote , Humans , Male , Middle Aged , Mutation
4.
Nat Rev Genet ; 19(10): 649-666, 2018 10.
Article in English | MEDLINE | ID: mdl-29995837

ABSTRACT

Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning.


Subject(s)
De Lange Syndrome , High-Throughput Nucleotide Sequencing , Mutation , Consensus , De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , De Lange Syndrome/physiopathology , De Lange Syndrome/therapy , Genetic Association Studies , Humans
5.
JIMD Rep ; 39: 83-87, 2018.
Article in English | MEDLINE | ID: mdl-28755360

ABSTRACT

We report the major diagnostic challenge in a female patient with signs and symptoms suggestive of an early-onset mitochondrial encephalopathy. Motor and cognitive development was severely delayed and brain MRI showed signal abnormalities in the putamen and caudate nuclei. Metabolic abnormalities included 3-methylglutaconic aciduria and elevated lactate levels in plasma and cerebrospinal fluid, but were transient. Whole exome sequencing at the age of 25 years finally revealed compound heterozygous mutations c.[229G>C];[563C>T], p.[Glu77Gln];[Ala188Val] in the ECHS1 gene. Activity of short-chain enoyl-CoA hydratase, a mitochondrial enzyme encoded by the ECHS1 gene, was markedly decreased in lymphocytes. Retrospective urine analysis confirms that elevated levels of S-(2-carboxypropyl)cysteamine, S-(2-carboxypropyl)cysteine, and N-acetyl-S-(2-carboxypropyl)cysteine can be a diagnostic clue in the disease spectrum of ECHS1 mutations.

6.
J Clin Res Pediatr Endocrinol ; 9(4): 366-370, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28588001

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a both clinically and genetically heterogeneous syndrome. In its classical form, it is characterised by distinctive facial features, intra-uterine growth retardation, short stature, developmental delay, and anomalies in multiple organ systems. NIPBL, SMC1A, SMC3, RAD21 and HDAC8, all involved in the cohesin pathway, have been identified to cause CdLS. Growth hormone (GH) secretion has been reported as normal, and to our knowledge, there are no reports on the effect of recombinant human GH treatment in CdLS patients. We present a patient born small for gestational age with persistent severe growth retardation [height -3.4 standard deviation score (SDS)] and mild dysmorphic features, who was treated with GH from 4.3 years of age onward and was diagnosed 6 years later with CdLS using whole-exome sequencing. Treatment led to a height gain of 1.6 SDS over 8 years. Treatment was interrupted shortly due to high serum insulin-like growth factor-1 serum values. In conclusion, GH therapy may be effective and safe for short children with CdLS.


Subject(s)
De Lange Syndrome/drug therapy , Human Growth Hormone/therapeutic use , Body Height/drug effects , Child , De Lange Syndrome/complications , Dwarfism/drug therapy , Dwarfism/etiology , Hormone Replacement Therapy , Humans , Infant, Small for Gestational Age/growth & development , Male , Treatment Outcome
7.
Am J Med Genet A ; 173(8): 2108-2125, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28548707

ABSTRACT

SMC1A encodes one of the proteins of the cohesin complex. SMC1A variants are known to cause a phenotype resembling Cornelia de Lange syndrome (CdLS). Exome sequencing has allowed recognizing SMC1A variants in individuals with encephalopathy with epilepsy who do not resemble CdLS. We performed an international, interdisciplinary study on 51 individuals with SMC1A variants for physical and behavioral characteristics, and compare results to those in 67 individuals with NIPBL variants. For the Netherlands all known individuals with SMC1A variants were studied, both with and without CdLS phenotype. Individuals with SMC1A variants can resemble CdLS, but manifestations are less marked compared to individuals with NIPBL variants: growth is less disturbed, facial signs are less marked (except for periocular signs and thin upper vermillion), there are no major limb anomalies, and they have a higher level of cognitive and adaptive functioning. Self-injurious behavior is more frequent and more severe in the NIPBL group. In the Dutch group 5 of 13 individuals (all females) had a phenotype that shows a remarkable resemblance to Rett syndrome: epileptic encephalopathy, severe or profound intellectual disability, stereotypic movements, and (in some) regression. Their missense, nonsense, and frameshift mutations are evenly spread over the gene. We conclude that SMC1A variants can result in a phenotype resembling CdLS and a phenotype resembling Rett syndrome. Resemblances between the SMC1A group and the NIPBL group suggest that a disturbed cohesin function contributes to the phenotype, but differences between these groups may also be explained by other underlying mechanisms such as moonlighting of the cohesin genes.


Subject(s)
Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , De Lange Syndrome/genetics , Proteins/genetics , Rett Syndrome/genetics , Adolescent , Adult , Child , Child, Preschool , De Lange Syndrome/diagnosis , De Lange Syndrome/physiopathology , Exome/genetics , Humans , Infant , Infant, Newborn , Male , Middle Aged , Netherlands/epidemiology , Rett Syndrome/diagnosis , Rett Syndrome/physiopathology , Spasms, Infantile/diagnosis , Spasms, Infantile/genetics , Spasms, Infantile/physiopathology , Young Adult
8.
J Community Genet ; 8(4): 327-333, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28555434

ABSTRACT

Genetically isolated populations exist worldwide. Specific genetic disorders, including rare autosomal recessive disorders may have high prevalences in these populations. We searched for Dutch genetically isolated populations and their autosomal recessive founder mutations. We investigated whether these founder mutations are covered in the (preconception) expanded carrier screening tests of five carrier screening providers. Our results show that the great majority of founder mutations are not covered in these screening panels, and these panels may thus not be appropriate for use in founder populations. It is therefore important to be aware of founder mutations in a population when offering carrier tests.

9.
Fam Cancer ; 16(2): 271-277, 2017 04.
Article in English | MEDLINE | ID: mdl-27826806

ABSTRACT

Since the 1980s the genetic cause of many hereditary tumor syndromes has been elucidated. As a consequence, carriers of a deleterious mutation in these genes may opt for prenatal diagnoses (PND). We studied the uptake of prenatal diagnosis for five hereditary cancer syndromes in the Netherlands. Uptake for retinoblastoma (Rb) was compared with uptake for Von Hippel-Lindau disease (VHL), Li-Fraumeni syndrome (LFS), familial adenomatous polyposis (FAP), and hereditary breast ovarian cancer (HBOC). A questionnaire was completed by all nine DNA-diagnostic laboratories assessing the number of independent mutation-positive families identified from the start of diagnostic testing until May 2013, and the number of PNDs performed for these syndromes within these families. Of 187 families with a known Rb-gene mutation, 22 had performed PND (11.8%), this was significantly higher than uptake for FAP (1.6%) and HBOC (<0.2%). For VHL (6.5%) and LFS (4.9%) the difference was not statistically significant. PND for Rb started 3 years after introduction of diagnostic DNA testing and remained stable over the years. For the other cancer syndromes PND started 10-15 years after the introduction and uptake for PND showed an increase after 2009. We conclude that uptake of PND for Rb was significantly higher than for FAP and HBOC, but not different from VHL and LFS. Early onset, high penetrance, lack of preventive surgery and perceived burden of disease may explain these differences.


Subject(s)
Early Detection of Cancer/statistics & numerical data , Genes, Retinoblastoma/genetics , Genetic Testing/statistics & numerical data , Neoplastic Syndromes, Hereditary/diagnosis , Prenatal Diagnosis/statistics & numerical data , Retinoblastoma/diagnosis , DNA Mutational Analysis , Early Detection of Cancer/methods , Female , Genetic Counseling , Humans , Mutation , Neoplastic Syndromes, Hereditary/genetics , Netherlands , Pregnancy , Prenatal Diagnosis/methods , Retinoblastoma/genetics , Retrospective Studies , Surveys and Questionnaires
10.
BMC Med Genomics ; 9: 7, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26846091

ABSTRACT

BACKGROUND: Clinical and genetic heterogeneity in monogenetic disorders represents a major diagnostic challenge. Although the presence of particular clinical features may aid in identifying a specific cause in some cases, the majority of patients remain undiagnosed. Here, we investigated the utility of whole-exome sequencing as a diagnostic approach for establishing a molecular diagnosis in a highly heterogeneous group of patients with varied intellectual disability and microcephaly. METHODS: Whole-exome sequencing was performed in 38 patients, including three sib-pairs, in addition to or in parallel with genetic analyses that were performed during the diagnostic work-up of the study participants. RESULTS: In ten out of these 35 families (29 %), we found mutations in genes already known to be related to a disorder in which microcephaly is a main feature. Two unrelated patients had mutations in the ASPM gene. In seven other patients we found mutations in RAB3GAP1, RNASEH2B, KIF11, ERCC8, CASK, DYRK1A and BRCA2. In one of the sib-pairs, mutations were found in the RTTN gene. Mutations were present in seven out of our ten families with an established etiological diagnosis with recessive inheritance. CONCLUSIONS: We demonstrate that whole-exome sequencing is a powerful tool for the diagnostic evaluation of patients with highly heterogeneous neurodevelopmental disorders such as intellectual disability with microcephaly. Our results confirm that autosomal recessive disorders are highly prevalent among patients with microcephaly.


Subject(s)
Exome/genetics , Intellectual Disability/complications , Intellectual Disability/genetics , Microcephaly/complications , Microcephaly/genetics , Sequence Analysis, DNA/methods , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Young Adult
11.
Eur J Med Genet ; 58(3): 123-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25641760

ABSTRACT

In a genetically isolated community in the Netherlands four severe recessive genetic disorders occur at relatively high frequency (pontocerebellar hypoplasia type 2 (PCH2), fetal akinesia deformation sequence (FADS), rhizomelic chondrodysplasia punctata type 1 (RCDP1), and osteogenesis imperfecta (OI) type IIB/III. Over the past decades multiple patients with these disorders have been identified. This warranted the start of a preconception outpatient clinic, in 2012, aimed at couples planning a pregnancy. The aim of our study was to evaluate the offer of targeted genetic carrier screening as a method to identify high-risk couples for having affected offspring in this high-risk subpopulation. In one year, 203 individuals (92 couples and 19 individuals) were counseled. In total, 65 of 196 (33.2%) tested individuals were carriers of at least one disease, five (7.7%) of them being carriers of two diseases. Carrier frequencies of PCH2, FADS, RCDP1, and OI were 14.3%, 11.2%, 6.1%, and 4.1% respectively. In individuals with a positive family history for one of the diseases, the carrier frequency was 57.8%; for those with a negative family history this was 25.8%. Four PCH2 carrier-couples were identified. Thus, targeted (preconception) carrier screening in this genetically isolated population in which a high prevalence of specific disorders occurs detects a high number of carriers, and is likely to be more effective compared to cascade genetic testing. Our findings and set-up can be seen as a model for carrier screening in other high-risk subpopulations and contributes to the discussion about the way carrier screening can be offered and organized in the general population.


Subject(s)
Genes, Recessive , Genetic Carrier Screening/methods , Genetic Testing/methods , Adolescent , Adult , Arthrogryposis/diagnosis , Arthrogryposis/genetics , Chondrodysplasia Punctata, Rhizomelic/diagnosis , Chondrodysplasia Punctata, Rhizomelic/genetics , Female , Founder Effect , Genetic Counseling , Humans , Male , Middle Aged , Netherlands , Olivopontocerebellar Atrophies/diagnosis , Olivopontocerebellar Atrophies/genetics , Osteogenesis Imperfecta/diagnosis , Osteogenesis Imperfecta/genetics , Pedigree , Peroxisomal Targeting Signal 2 Receptor/deficiency , Pregnancy , Young Adult
12.
J Med Genet ; 51(10): 659-68, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25125236

ABSTRACT

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a multisystem disorder with distinctive facial appearance, intellectual disability and growth failure as prominent features. Most individuals with typical CdLS have de novo heterozygous loss-of-function mutations in NIPBL with mosaic individuals representing a significant proportion. Mutations in other cohesin components, SMC1A, SMC3, HDAC8 and RAD21 cause less typical CdLS. METHODS: We screened 163 affected individuals for coding region mutations in the known genes, 90 for genomic rearrangements, 19 for deep intronic variants in NIPBL and 5 had whole-exome sequencing. RESULTS: Pathogenic mutations [including mosaic changes] were identified in: NIPBL 46 [3] (28.2%); SMC1A 5 [1] (3.1%); SMC3 5 [1] (3.1%); HDAC8 6 [0] (3.6%) and RAD21 1 [0] (0.6%). One individual had a de novo 1.3 Mb deletion of 1p36.3. Another had a 520 kb duplication of 12q13.13 encompassing ESPL1, encoding separase, an enzyme that cleaves the cohesin ring. Three de novo mutations were identified in ANKRD11 demonstrating a phenotypic overlap with KBG syndrome. To estimate the number of undetected mosaic cases we used recursive partitioning to identify discriminating features in the NIPBL-positive subgroup. Filtering of the mutation-negative group on these features classified at least 18% as 'NIPBL-like'. A computer composition of the average face of this NIPBL-like subgroup was also more typical in appearance than that of all others in the mutation-negative group supporting the existence of undetected mosaic cases. CONCLUSIONS: Future diagnostic testing in 'mutation-negative' CdLS thus merits deeper sequencing of multiple DNA samples derived from different tissues.


Subject(s)
De Lange Syndrome/genetics , Genetic Heterogeneity , Mosaicism , Face/pathology , Genetic Association Studies , Humans , Mutation , Phenotype
13.
J Med Genet ; 50(5): 339-44, 2013 May.
Article in English | MEDLINE | ID: mdl-23505322

ABSTRACT

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a well known malformation syndrome for which five causative genes are known, accounting for ∼55-65% of cases. In this study, we hypothesised that mosaicism might explain some of the ∼35-45% of cases without detectable mutation in DNA derived from lymphocytes; we investigated the frequency of NIPBL mutations in buccal cells in individuals negative for mutations in any of the five genes in lymphocytes; and we evaluated the efficiency of obtaining DNA from buccal swabs and the best strategy for optimal mutation detection in CdLS. METHODS: Buccal swabs were obtained from eight mutation positive and 13 mutation negative individuals with clinically diagnosed CdLS, following informed consent. We then forwarded instructions and a single mouth swab to the families; if subsequently insufficient DNA was obtained, we re-sent two mouth swabs. Buccal cells were screened for NIPBL mutations using Sanger sequencing techniques. RESULTS: Sufficient DNA for analysis was obtained in 21/22 individuals. In all six tested individuals with a known NIPBL mutation and in two with a known SMC1A mutation, the mutation was confirmed in buccal cells. In 10 of the 13 tested individuals without detectable mutation in lymphocytes a NIPBL mutation could be detected in buccal cells. Clinically there were no significant differences between patients with a germline and mosaic NIPBL mutation. CONCLUSIONS: Somatic mosaicism for an NIPBL mutation is frequent (10/44; 23%) clinically in reliably diagnosed CdLS individuals. Obtaining buccal swabs at the time a blood sample is obtained will facilitate adequate molecular analysis of clinically diagnosed CdLS patients.


Subject(s)
De Lange Syndrome/genetics , Mosaicism , Proteins/genetics , Base Sequence , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Humans , Molecular Sequence Data , Mouth Mucosa/cytology , Sequence Analysis, DNA
14.
Clin Chem ; 58(4): 717-24, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22294733

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) is an autosomal dominant disorder that affects cholesterol metabolism and is an important risk factor for heart disease. Three different genes were causally linked to this disorder: LDLR (low density lipoprotein receptor), APOB [apolipoprotein B (including Ag(x) antigen)], and PCSK9 (proprotein convertase subtilisin/kexin type 9). We evaluated a new amplicon preparation tool for resequencing these genes on next generation sequencing (NGS) platforms. METHODS: For the 3 genes, 38 primer pairs were designed and loaded on the Fluidigm Access Array, a microfluidic array in which a PCR was performed. We amplified 144 DNA samples (73 positive controls and 71 patient samples) and performed 3 sequencing runs on a GS FLX Titanium system from Roche 454, using pyrosequencing. Data were analyzed with the SeqNext module of the Sequence Pilot software. RESULT: From the 38 amplicons, 37 were amplified successfully, without any further optimization. Sequencing resulted in a mean coverage of the individual amplicons of 71-fold, 74-fold, and 117-fold for the 3 runs, respectively. In the positive controls, all known mutations were identified. In 29% of the patient samples, a pathogenic point mutation or small deletion/insertion was found. Large rearrangements were not detectable with NGS, but were picked up by multiplex ligation-dependent probe amplification. CONCLUSIONS: Combining a microfluidic amplification system with massive parallel sequencing is an effective method for mutation scanning in FH patients, which can be implemented in diagnostics. For data analysis, we propose a minimum variant frequency threshold of 20% and a minimum coverage of 25-fold.


Subject(s)
Hyperlipoproteinemia Type II/genetics , Apolipoproteins B/genetics , Humans , Microfluidic Analytical Techniques , Mutation , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Proprotein Convertase 9 , Proprotein Convertases/genetics , Receptors, LDL/genetics , Sequence Analysis, DNA , Serine Endopeptidases/genetics
15.
Lancet Oncol ; 12(1): 49-55, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21145788

ABSTRACT

BACKGROUND: Lynch syndrome is caused by germline mutations in MSH2, MLH1, MSH6, and PMS2 mismatch-repair genes and leads to a high risk of colorectal and endometrial cancer. We previously showed that constitutional 3' end deletions of EPCAM can cause Lynch syndrome through epigenetic silencing of MSH2 in EPCAM-expressing tissues, resulting in tissue-specific MSH2 deficiency. We aim to establish the risk of cancer associated with such EPCAM deletions. METHODS: We obtained clinical data for 194 carriers of a 3' end EPCAM deletion from 41 families known to us at the Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands and compared cancer risk with data from a previously described cohort of 473 carriers from 91 families with mutations in MLH1, MSH2, MSH6, or a combined EPCAM-MSH2 deletion. FINDINGS: 93 of the 194 EPCAM deletion carriers were diagnosed with colorectal cancer; three of the 92 women with EPCAM deletions were diagnosed with endometrial cancer. Carriers of an EPCAM deletion had a 75% (95% CI 65-85) cumulative risk of colorectal cancer before the age of 70 years (mean age at diagnosis 43 years [SD 12]), which did not differ significantly from that of carriers of combined EPCAM-MSH2 deletion (69% [95% CI 47-91], p=0·8609) or mutations in MSH2 (77% [64-90], p=0·5892) or MLH1 (79% [68-90], p=0·5492), but was higher than noted for carriers of MSH6 mutation (50% [38-62], p<0·0001). By contrast, women with EPCAM deletions had a 12% [0-27] cumulative risk of endometrial cancer, which was lower than was that noted for carriers of a combined EPCAM-MSH2 deletion (55% [20-90], p<0·0001) or of a mutation in MSH2 (51% [33-69], p=0·0006) or MSH6 (34% [20-48], p=0·0309), but did not differ significantly from that noted for MLH1 (33% [15-51], p=0·1193) mutation carriers. This risk seems to be restricted to deletions that extend close to the MSH2 gene promoter. Of 194 carriers of an EPCAM deletion, three had duodenal cancer and four had pancreatic cancer. INTERPRETATION: EPCAM deletion carriers have a high risk of colorectal cancer; only those with deletions extending close to the MSH2 promoter have an increased risk of endometrial cancer. These results underscore the effect of mosaic MSH2 deficiency, leading to variable cancer risks, and could form the basis of an optimised protocol for the recognition and targeted prevention of cancer in EPCAM deletion carriers.


Subject(s)
Antigens, Neoplasm/genetics , Cell Adhesion Molecules/genetics , Colorectal Neoplasms/genetics , Endometrial Neoplasms/genetics , Sequence Deletion , Adolescent , Adult , Aged , Cohort Studies , Colorectal Neoplasms/etiology , Endometrial Neoplasms/etiology , Epithelial Cell Adhesion Molecule , Female , Gene Deletion , Humans , Male , Middle Aged , MutS Homolog 2 Protein/genetics , Promoter Regions, Genetic , Risk
16.
Hum Mutat ; 31(11): 1216-22, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20824775

ABSTRACT

The establishment of Locus Specific Databases (LSDB) is a crucial aspect for the Human Genetics field and one of the aims of the Human Variation Project. We report the development of a publicly accessible LSDB for the NIPBL gene (http://www.lovd.nl/NIPBL) implicated in Cornelia de Lange Syndrome (CdLS). This rare disorder is characterized by developmental and growth retardation, typical facial features, limb anomalies, and multiple organ involvement. Mutations in the NIPBL gene, the product of which is involved in control of the cohesion complex, account for over half of the patients currently characterized. The NIPBL LSDB adopted the Leiden Open Variation database (LOVD) software platform, which enables the comprehensive Web-based listing and curation of sequence variations and associated phenotypical information. The NIPBL-LOVD database contains 199 unique mutations reported in 246 patients (last accessed April 2010). Information on phenotypic characteristics included in the database enabled further genotype-phenotype correlations, the most evident being the severe form of CdLS associated with premature termination codons in the NIPBL gene. In addition to the NIPBL LSDB, 50 novel mutations are described in detail, resulting from a collaborative multicenter study.


Subject(s)
Databases, Genetic , De Lange Syndrome/genetics , Mutation , Proteins/genetics , Cell Cycle Proteins , Codon, Nonsense/genetics , Genetic Association Studies , Genetic Variation , Humans
17.
Hum Mutat ; 31(11): 1205-15, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20725929

ABSTRACT

The MUTYH gene encodes a DNA glycosylase involved in base excision repair (BER). Biallelic pathogenic MUTYH variants have been associated with colorectal polyposis and cancer. The pathogenicity of a few variants is beyond doubt, including c.536A4G/p.Tyr179Cys and c.1187G4A/p.Gly396Asp (previously c.494A4G/p.Tyr165Cys and c.1145G4A/p.Gly382Asp).However, for a substantial fraction of the detected variants, the clinical significance remains uncertain,compromising molecular diagnostics and thereby genetic counseling. We have established an interactive MUTYH gene sequence variant database (www.lovd.nl/MUTYH) with the aim of collecting and sharing MUTYH genotype and phenotype data worldwide. To support standard variant description, we chose NM_001128425.1 as the reference sequence. The database includes records with variants per individual, linked to available phenotype and geographic origin data as well as records with in vitro functional and in silico test data. As of April 2010, the database contains 1968 published and 423 unpublished submitted entries, and 230 and 61 unique variants,respectively. This open-access repository allows all involved to quickly share all variants encountered and communicate potential consequences, which will be especially useful to classify variants of uncertain significance.


Subject(s)
DNA Glycosylases/genetics , Databases, Genetic , Genetic Variation , Adenomatous Polyposis Coli/genetics , Alternative Splicing , Amino Acid Sequence , Base Sequence , DNA/genetics , DNA Glycosylases/chemistry , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Molecular Sequence Data , Mutation , Netherlands , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Structure, Tertiary
18.
Mol Vis ; 14: 836-40, 2008 May 07.
Article in English | MEDLINE | ID: mdl-18483559

ABSTRACT

Mutations in the PAX6 gene have been implicated in aniridia, a congenital malformation of the eye with severe hypoplasia of the iris. However, not all aniridia cases can be explained by mutations in the PAX6 gene. The purpose of this study was to enhance the molecular diagnosis of aniridia using multiplex ligation-dependent probe amplification (MLPA). Total genomic DNA was isolated from peripheral blood of 70 unrelated probands affected with aniridia. Polymerase chain reaction (PCR) was performed followed by automated bidirectional sequencing. Additionally, MLPA was performed. We identified 24 different point mutations in the PAX6 gene in 34 patients after sequencing. In eight additional patients, we identified a deletion of one or more exons of the PAX6 gene or in the 3' regulatory region of the PAX6 gene using MLPA. This work demonstrates the necessity to screen for larger deletions in the region of the PAX6 gene in addition to the sequencing of exons in the PAX6 gene. The mutation detection rate will increase from 49% to 60%. This shows that MLPA substantially enhances the molecular diagnosis of aniridia.


Subject(s)
Aniridia/diagnosis , Aniridia/genetics , Polymerase Chain Reaction/methods , WAGR Syndrome/diagnosis , WAGR Syndrome/genetics , Exons/genetics , Eye Proteins/genetics , Homeodomain Proteins/genetics , Humans , In Situ Hybridization, Fluorescence , PAX6 Transcription Factor , Paired Box Transcription Factors/genetics , Point Mutation/genetics , Repressor Proteins/genetics , Sequence Deletion
19.
Hum Mol Genet ; 16(12): 1478-87, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17468178

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a rare dominantly inherited multisystem disorder affecting both physical and mental development. Heterozygous mutations in the NIPBL gene were found in about half of CdLS cases. Scc2, the fungal ortholog of the NIPBL gene product, is essential for establishing sister chromatid cohesion. In yeast, the absence of cohesion leads to chromosome mis-segregation and defective repair of DNA double-strand breaks. To evaluate possible DNA repair defects in CdLS cells, we characterized the cellular responses to DNA-damaging agents. We show that cells derived from CdLS patients, both with and without detectable NIPBL mutations, have an increased sensitivity for mitomycin C (MMC). Exposure of CdLS fibroblast and B-lymphoblastoid cells to MMC leads to enhanced cell killing and reduced proliferation and, in the case of primary fibroblasts, an increased number of chromosomal aberrations. After X-ray exposure increased numbers of chromosomal aberrations were also detected, but only in cells irradiated in the G(2)-phase of the cell cycle when repair of double-strand breaks is dependent on the establishment of sister chromatid cohesion. Repair at the G(1) stage is not affected in CdLS cells. Our studies indicate that CdLS cells have a reduced capacity to tolerate DNA damage, presumably as a result of reduced DNA repair through homologous recombination.


Subject(s)
DNA Damage , DNA Repair/physiology , De Lange Syndrome/genetics , Cell Cycle Proteins , Cells, Cultured , Chromosome Aberrations , G2 Phase , Histones/metabolism , Humans , Mitomycin/pharmacology , Nucleic Acid Synthesis Inhibitors/pharmacology , Proteins/genetics , Proteins/metabolism , Rad51 Recombinase/metabolism , Radiation, Ionizing , Recombination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...