Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Water Res ; 257: 121677, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728777

ABSTRACT

Photochemical processes are typically not incorporated in screening-level substance risk assessments due to the complexity of modeling sunlight co-exposures and resulting interactions on environmental fate and effects. However, for many substances, sunlight exerts a profound influence on environmental degradation rates and ecotoxicities. Recent modeling advances provide an improved technical basis for estimating the effect of sunlight in modulating both substance exposure and toxicity in the aquatic environment. Screening model simulations were performed for 25 petrochemical structures with varied uses and environmental fate properties. Model predictions were evaluated by comparing the ratios of predicted exposure concentrations with and without light to the corresponding ratios of toxicity thresholds under the same conditions. The relative ratios of exposure and hazard in light vs. dark were then used to evaluate how inclusion of light modulates substance risk analysis. Results indicated that inclusion of light reduced PECs by factors ranging from 1.1- to 63-fold as a result of photodegradation, while reducing PNECs by factors ranging from 1- to 49-fold due to photoenhanced toxicity caused by photosensitization. Consequently, the presence of light altered risk quotients by factors that ranged from 0.1- to 17-fold, since the predicted increase in substance hazard was mitigated by the reduction in exposure. For many structures, indirect photodegradation decreases environmental exposures independently of the direct photolysis pathway which is associated with enhanced phototoxicity. For most of the scenarios and chemicals in the present work, photosensitization appears to be mitigated by direct and indirect degradation from sunlight exposure.


Subject(s)
Photolysis , Sunlight , Water Pollutants, Chemical , Risk Assessment , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity , Models, Theoretical
2.
ACS ES T Water ; 4(4): 1483-1497, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633367

ABSTRACT

Environmental reclamation of Canada's oil sands tailings ponds is among the single largest water treatment challenges globally. The toxicity of oil sands process-affected water (OSPW) has been associated with its dissolved organics, a complex mixture of naphthenic acid fraction components (NAFCs). Here, we evaluated solar treatment with buoyant photocatalysts (BPCs) as a passive advanced oxidation process (P-AOP) for OSPW remediation. Photocatalysis fully degraded naphthenic acids (NAs) and acid extractable organics (AEO) in 3 different OSPW samples. However, classical NAs and AEO, traditionally considered among the principal toxicants in OSPW, were not correlated with OSPW toxicity herein. Instead, nontarget petroleomic analysis revealed that low-polarity organosulfur compounds, composing <10% of the total AEO, apparently accounted for the majority of waters' toxicity to fish, as described by a model of tissue partitioning. These findings have implications for OSPW release, for which a less extensive but more selective treatment may be required than previously expected.

3.
Environ Toxicol Chem ; 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975556

ABSTRACT

Since recognizing the importance of bioavailability for understanding the toxicity of chemicals in sediments, mechanistic modeling has advanced over the last 40 years by building better tools for estimating exposure and making predictions of probable adverse effects. Our review provides an up-to-date survey of the status of mechanistic modeling in contaminated sediment toxicity assessments. Relative to exposure, advances have been most substantial for non-ionic organic contaminants (NOCs) and divalent cationic metals, with several equilibrium partitioning-based (Eq-P) models having been developed. This has included the use of Abraham equations to estimate partition coefficients for environmental media. As a result of the complexity of their partitioning behavior, progress has been less substantial for ionic/polar organic contaminants. When the EqP-based estimates of exposure and bioavailability are combined with water-only effects measurements, predictions of sediment toxicity can be successfully made for NOCs and selected metals. Both species sensitivity distributions and toxicokinetic and toxicodynamic models are increasingly being applied to better predict contaminated sediment toxicity. Furthermore, for some classes of contaminants, such as polycyclic aromatic hydrocarbons, adverse effects can be modeled as mixtures, making the models useful in real-world applications, where contaminants seldomly occur individually. Despite the impressive advances in the development and application of mechanistic models to predict sediment toxicity, several critical research needs remain to be addressed. These needs and others represent the next frontier in the continuing development and application of mechanistic models for informing environmental scientists, managers, and decisions makers of the risks associated with contaminated sediments. Environ Toxicol Chem 2023;00:1-17. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

4.
Environ Sci Technol ; 57(34): 12583-12593, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37590158

ABSTRACT

Petroleum substances, as archetypical UVCBs (substances of unknown or variable composition, complex reaction products, or biological substances), pose a challenge for chemical risk assessment as they contain hundreds to thousands of individual constituents. It is particularly challenging to determine the biodegradability of petroleum substances since each constituent behaves differently. Testing the whole substance provides an average biodegradation, but it would be effectively impossible to obtain all constituents and test them individually. To overcome this challenge, comprehensive two-dimensional gas chromatography (GC × GC) in combination with advanced data-handling algorithms was applied to track and calculate degradation half-times (DT50s) of individual constituents in two dispersed middle distillate gas oils in seawater. By tracking >1000 peaks (representing ∼53-54% of the total mass across the entire chromatographic area), known biodegradation patterns of oil constituents were confirmed and extended to include many hundreds not currently investigated by traditional one-dimensional GC methods. Approximately 95% of the total tracked peak mass biodegraded after 64 days. By tracking the microbial community evolution, a correlation between the presence of functional microbial communities and the observed progression of DT50s between chemical classes was demonstrated. This approach could be used to screen the persistence of GC × GC-amenable constituents of petroleum substance UVCBs.


Subject(s)
Petroleum , Chromatography, Gas , Algorithms , Biodegradation, Environmental , Food
5.
Integr Environ Assess Manag ; 19(6): 1433-1456, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36880196

ABSTRACT

This study investigates and reviews methods for the assessment of the terrestrial bioaccumulation potential of hydrocarbons and related organic substances. The study concludes that the unitless biomagnification factor (BMF) and/or the trophic magnification factor (TMF) are appropriate, practical, and thermodynamically meaningful metrics for identifying bioaccumulative substances in terrestrial food chains. The study shows that various methods, including physical-chemical properties like the KOA and KOW , in vitro biotransformation assays, quantitative structure-activity relationships, in vivo pharmacokinetic and dietary bioaccumulation tests, and field-based trophic magnification studies, can inform on whether a substance has the potential to biomagnify in a terrestrial food chain as defined by a unitless BMF exceeding 1. The study further illustrates how these methods can be arranged in a four-tier evaluation scheme for the purpose of screening assessments that aim to minimize effort and costs and expediate bioaccumulation assessment of the vast numbers of organic substances in commerce, identifies knowledge gaps, and provides recommendations for further research to improve bioaccumulation assessment. Integr Environ Assess Manag 2023;19:1433-1456. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Environmental Monitoring , Food Chain , Bioaccumulation , Environmental Monitoring/methods , Hydrocarbons , Ecotoxicology
6.
Aquat Toxicol ; 256: 106390, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36709615

ABSTRACT

Photo-induced toxicity of petroleum products and polycyclic aromatic compounds (PACs) is the enhanced toxicity caused by their interaction with ultraviolet radiation and occurs by two distinct mechanisms: photosensitization and photomodification. Laboratory approaches for designing, conducting, and reporting of photo-induced toxicity studies are reviewed and recommended to enhance the original Chemical Response to Oil Spills: Ecological Research Forum (CROSERF) protocols which did not address photo-induced toxicity. Guidance is provided on conducting photo-induced toxicity tests, including test species, endpoints, experimental design and dosing, light sources, irradiance measurement, chemical characterization, and data reporting. Because of distinct mechanisms, aspects of photosensitization (change in compound energy state) and photomodification (change in compound structure) are addressed separately, and practical applications in laboratory and field studies and advances in predictive modeling are discussed. One goal for developing standardized testing protocols is to support lab-to-field extrapolations, which in the case of petroleum substances often requires a modeling framework to account for differential physicochemical properties of the constituents. Recommendations are provided to promote greater standardization of laboratory studies on photo-induced toxicity, thus facilitating comparisons across studies and generating data needed to improve models used in oil spill science.


Subject(s)
Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Polycyclic Compounds , Water Pollutants, Chemical , Petroleum/toxicity , Petroleum/analysis , Ultraviolet Rays , Water Pollutants, Chemical/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Organic Chemicals , Petroleum Pollution/analysis
7.
Chemosphere ; 311(Pt 2): 137127, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36334744

ABSTRACT

Petroleum refinery effluents (PRE) are wastewaters from industries associated with oil refining. Within Europe, PREs are regulated through local discharge permits and receive substantial treatment before emission. After treatment, PREs can still contain low levels of various pollutants potentially toxic to organisms. Earlier work, including whole-effluent toxicity assessments, has shown that the toxicity of permitted PREs is often limited. However, the extent to which PREs contribute to chemical pollution already present in the receiving environment is unknown. Therefore, our study aimed to assess the contribution of PREs to mixture toxic pressure in the environment, using the multi-substance potentially affected fraction of species (msPAF) as an indicator. Based on measured chemical concentrations, compiled species sensitivity distributions (SSD) and a mechanistic solubility model, msPAF levels were estimated for undiluted effluents at discharge points and diluted effluents downstream in receiving waters. Median msPAF-chronic and msPAF-acute levels of PREs at discharge points were 74% (P50) and 40% (P95), respectively. The calculated msPAF levels were reduced substantially to <5% downstream for most effluents (82%), indicating low to negligible toxicity of PREs in receiving environments beyond the initial mixing zone. Regardless of differences in endpoints and locations, hydrocarbons (mainly total petroleum hydrocarbons) and inorganics (mainly ammonia) explained at least 85% of the mixture toxic pressure. The msPAF levels of PREs were on average 2.5-4.5 orders of magnitude lower than msPAF levels derived from background pollution levels, suggesting that PREs were minor contributors to the toxic pressure in the environment. This study presents a generic methodology for quantifying the potential toxic pressure of PREs in the environment, identifying hotspots where more effective wastewater treatment could be needed. We explicitly discuss the uncertainties for further refinement and development of the method.


Subject(s)
Environmental Pollutants , Petroleum , Water Pollutants, Chemical , Petroleum/toxicity , Environmental Pollution , Wastewater , Hydrocarbons , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
8.
Environ Toxicol Chem ; 41(12): 3070-3083, 2022 12.
Article in English | MEDLINE | ID: mdl-36102847

ABSTRACT

Oil spill exposures are highly dynamic and are not comparable to laboratory exposures used in standard toxicity tests. Toxicokinetic-toxicodynamic (TKTD) models allow translation of effects observed in the laboratory to the field. To improve TKTD model calibration, new and previously published data from 148 tests were analyzed to estimate rates characterizing the time course of toxicity for 10 fish and 42 invertebrate species across 37 hydrocarbons. A key parameter in the TKTD model is the first-order rate that incorporates passive elimination, biotransformation, and damage repair processes. The results indicated that temperature (4-26 °C), organism size (0.0001-10 g), and substance log octanol-water partition coefficient (2-6) had limited influence on this parameter, which exhibited a 5th to 95th percentile range of 0.2-2.5 day-1 (median 0.7 day-1 ). A species sensitivity distribution approach is proposed to quantify the variability of this parameter across taxa, with further studies needed for aliphatic hydrocarbons and plant species. Study findings allow existing oil spill models to be refined to improve effect predictions. Environ Toxicol Chem 2022;41:3070-3083. © 2022 ExxonMobil Biomedical Science Inc. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Water Pollutants, Chemical , Animals , Temperature , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/chemistry , Ecotoxicology , Hydrocarbons/toxicity , Hydrophobic and Hydrophilic Interactions
9.
Environ Toxicol Chem ; 41(6): 1359-1369, 2022 06.
Article in English | MEDLINE | ID: mdl-35262215

ABSTRACT

Quantitative structure-property relationship (QSPR) models for predicting primary biodegradation of petroleum hydrocarbons have been previously developed. These models use experimental data generated under widely varied conditions, the effects of which are not captured adequately within model formalisms. As a result, they exhibit variable predictive performance and are unable to incorporate the role of study design and test conditions on the assessment of environmental persistence. To address these limitations, a novel machine-learning System-Integrated Model (HC-BioSIM) is presented, which integrates chemical structure and test system variability, leading to improved prediction of primary disappearance time (DT50) values for petroleum hydrocarbons in fresh and marine water. An expanded, highly curated database of 728 experimental DT50 values (181 unique hydrocarbon structures compiled from 13 primary sources) was used to develop and validate a supervised model tree machine-learning model. Using relatively few parameters (6 system and 25 structural parameters), the model demonstrated significant improvement in predictive performance (root mean square error = 0.26, R2 = 0.67) over existing QSPR models. The model also demonstrated improved accuracy of persistence (P) categorization (i.e., "Not P/P/vP"), with an accuracy of 96.8%, and false-positive and -negative categorization rates of 0.4% and 2.7%, respectively. This significant improvement in DT50 prediction, and subsequent persistence categorization, validates the need for models that integrate experimental design and environmental system parameters into biodegradation and persistence assessment. Environ Toxicol Chem 2022;41:1359-1369. © 2022 ExxonMobil Biomedical Sciences, Inc. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Petroleum , Biodegradation, Environmental , Hydrocarbons/chemistry , Machine Learning , Molecular Structure , Petroleum/metabolism
10.
Integr Environ Assess Manag ; 18(4): 868-887, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34730270

ABSTRACT

Assessing the persistence of chemicals in the environment is a key element in existing regulatory frameworks to protect human health and ecosystems. Persistence in the environment depends on many fate processes, including abiotic and biotic transformations and physical partitioning, which depend on substances' physicochemical properties and environmental conditions. A main challenge in persistence assessment is that existing frameworks rely on simplistic and reductionist evaluation schemes that may lead substances to be falsely assessed as persistent or the other way around-to be falsely assessed as nonpersistent. Those evaluation schemes typically assess persistence against degradation half-lives determined in single-compartment simulation tests or against degradation levels measured in stringent screening tests. Most of the available test methods, however, do not apply to all types of substances, especially substances that are poorly soluble, complex in composition, highly sorptive, or volatile. In addition, the currently applied half-life criteria are derived mainly from a few legacy persistent organic pollutants, which do not represent the large diversity of substances entering the environment. Persistence assessment would undoubtedly benefit from the development of more flexible and holistic evaluation schemes including new concepts and methods. A weight-of-evidence (WoE) approach incorporating multiple influencing factors is needed to account for chemical fate and transformation in the whole environment so as to assess overall persistence. The present paper's aim is to begin to develop an integrated assessment framework that combines multimedia approaches to organize and interpret data using a clear WoE approach to allow for a more consistent, transparent, and thorough assessment of persistence. Integr Environ Assess Manag 2022;18:868-887. © 2021 ExxonMobil Biomedical Sciences, Inc. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Ecotoxicology , Environmental Monitoring , Ecosystem , Environmental Monitoring/methods , Environmental Pollution/analysis , Humans , Risk Assessment/methods
11.
BMC Chem ; 15(1): 52, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34526066

ABSTRACT

Water solubility is perhaps the single most important physical-chemical property determining the environmental fate and effects of organic compounds. Its determination is particularly challenging for compounds with extremely low solubility, frequently referred to as "difficult-to-test" substances and having solubility's generally less than 0.1 mg/L. The existing regulatory water solubility test for these compounds is the column elution method. Its applicability, however, is limited, to non-volatile solid or crystalline hydrophobic organic compounds. There currently exists no test guideline for measuring the water solubility of very hydrophobic liquid, and potentially volatile, difficult-to-test compounds. This paper describes a "slow-stir" water solubility methodology along with results of a ring trial across five laboratories evaluating the method's performance. The slow-stir method was applied to n-hexylcyclohexane, a volatile, liquid hydrophobic hydrocarbon. In order to benchmark the inter-laboratory variability associated with the proposed slow-stir method, the five laboratories separately determined the solubility of dodecahydrotriphenylene, a hydrophobic solid compound using the existing column elution guideline. Results across the participating laboratories indicated comparable reproducibility with relative standard deviations (RSD) of 20% or less reported for each test compound - solubility method pair. The inter-laboratory RSD was 16% for n-hexylcyclohexane (mean 14 µg/L, n = 5) using the slow-stir method. For dodecahydrotriphenylene, the inter-laboratory RSD was 20% (mean 2.6 µg/L, n = 4) using the existing column elution method. This study outlines approaches that should be followed and the experimental parameters that have been deemed important for an expanded ring trial of the slow-stir water solubility method.

12.
Environ Toxicol Chem ; 40(11): 3000-3009, 2021 11.
Article in English | MEDLINE | ID: mdl-34407226

ABSTRACT

Heterocyclic aromatic compounds can be found in crude oil and coal and often co-exist in environmental samples with their homocyclic aromatic counterparts. The target lipid model (TLM) is a modeling framework that relates aquatic toxicity to the octanol-water partition coefficient (KOW ) that has been calibrated and validated for hydrocarbons. A systematic analysis of the applicability of the TLM to heterocyclic aromatic compounds has not been performed. The objective of the present study was to compile reliable toxicity data for heterocycles and determine whether observed toxicity could be successfully described by the TLM. Results indicated that the TLM could be applied to this compound class by adopting an empirically derived coefficient that accounts for partitioning between water and lipid. This coefficient was larger than previously reported for aromatic hydrocarbons, indicating that these heterocyclic compounds exhibit higher affinity to target lipid and toxicity. A mechanistic evaluation confirmed that the hydrogen bonding accepting moieties of the heteroatoms helped explain differences in partitioning behavior. Given the TLM chemical class coefficient reported in the present study, heterocyclic aromatics can now be explicitly incorporated in TLM-based risk assessments of petroleum substances, other products, or environmental media containing these compounds. Environ Toxicol Chem 2021;40:3000-3009. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Heterocyclic Compounds , Petroleum , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Aquatic Organisms , Heterocyclic Compounds/toxicity , Lipids/chemistry , Organic Chemicals/toxicity , Petroleum/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Water , Water Pollutants, Chemical/analysis
13.
Integr Environ Assess Manag ; 17(5): 911-925, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33620129

ABSTRACT

Bioaccumulation (B) assessment is challenging because there are various B-metrics from laboratory and field studies, multiple criteria and thresholds for classifying bioaccumulative (B), very bioaccumulative (vB), and not bioaccumulative (nB) chemicals, as well as inherent variability and uncertainty in the data. These challenges can be met using a weight of evidence (WoE) approach. The Bioaccumulation Assessment Tool (BAT) provides a transparent WoE assessment framework that follows Organisation for Economic Co-operation and Development (OECD) principles for performing a WoE analysis. The BAT guides an evaluator through the process of data collection, generation, evaluation, and integration of various lines of evidence (LoE) (i.e., B-metrics) to inform decision-making. Phenanthrene (PHE) is a naturally occurring chemical for which extensive B and toxicokinetics data are available. A B assessment for PHE using the BAT is described that includes a critical evaluation of 74 measured in vivo LoE for fish and invertebrate species from laboratory and field studies. The number of LoE are reasonably well balanced across taxa (i.e., fish and invertebrates) and the different B-metrics. Additionally, in silico and in vitro biotransformation rate estimates and corresponding model-predicted B-metrics are included as corroborating evidence. Application of the BAT provides a consistent, coherent, and scientifically defensible WoE evaluation to conclude that PHE is not bioaccumulative (nB) because the overwhelming majority of the bioconcentration, bioaccumulation, and biomagnification metrics for both fish and invertebrates are below regulatory thresholds. An analysis of the relevant data using fugacity ratios is also provided, showing that PHE does not biomagnify in aquatic food webs. The critical review identifies recommendations to increase the consistency of B assessments, such as improved standardization of B testing guidelines, data reporting requirements for invertebrate studies, and consideration of temperature and salinity effects on certain B-metrics. Integr Environ Assess Manag 2021;17:911-925. © 2021 Concawe. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Subject(s)
Ecotoxicology , Phenanthrenes , Animals , Bioaccumulation , Fishes , Food Chain , Phenanthrenes/toxicity , Risk Assessment
14.
Mar Pollut Bull ; 165: 112151, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33601277

ABSTRACT

Assessing oil spill toxicity in real time is challenging due to dynamic field exposures and lack of simple, rapid, and sensitive tests. We investigated the relative sensitivity of two commercially available marine toxicity tests to aromatic hydrocarbons using the target lipid model (TLM). State of the art passive dosing in sealed vials was used to assess the sensitivity of brine shrimp (Artemia franciscana) and rotifer (Brachionus plicatilis). Organisms were exposed to toluene, 1-methylnaphthalene and phenanthrene for 24 h. Toxicity results were analysed using the TLM to estimate the critical target lipid body burden and support comparison to empirical data for 79 other aquatic organisms. Our findings demonstrate the applicability of passive dosing to test small volumes and indicate that the two rapid cyst-based assays are insensitive in detecting hydrocarbon exposures compared to other aquatic species. Our results highlight the limitations of applying these tests for oil pollution monitoring and decision-making.


Subject(s)
Hydrocarbons, Aromatic , Petroleum Pollution , Petroleum , Polycyclic Aromatic Hydrocarbons , Rotifera , Water Pollutants, Chemical , Animals , Petroleum/analysis , Petroleum Pollution/analysis , Polycyclic Aromatic Hydrocarbons/toxicity , Toxicity Tests , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
15.
Chemosphere ; 265: 129174, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33340835

ABSTRACT

Reliable delineation of aquatic toxicity cut-offs for poorly soluble hydrocarbons is lacking. In this study, vapor and passive dosing methods were applied in limit tests with algae and daphnids to evaluate the presence or absence of chronic effects at exposures corresponding to the water solubility for representative hydrocarbons from five structural classes: branched alkanes, mono, di, and polynaphthenic (cyclic) alkanes and monoaromatic naphthenic hydrocarbons (MANHs). Algal growth rate and daphnid immobilization, growth and reproduction served as the chronic endpoints investigated. Results indicated that the dosing methods applied were effective for maintaining mean measured exposure concentrations within a factor of two or higher of the measured water solubility of the substances investigated. Chronic effects were not observed for hydrocarbons with an aqueous solubility below approximately 5 µg/L. This solubility cut-off corresponds to structures consisting of 13-14 carbons for branched and cyclic alkanes and 16-18 carbons for MANHs. These data support reliable hazard and risk evaluation of hydrocarbon classes that comprise petroleum substances and the methods described have broad applicability for establishing empirical solubility cut-offs for other classes of hydrophobic substances. Future work is needed to understand the role of biotransformation on the observed presence or absence of toxicity in chronic tests.


Subject(s)
Petroleum , Water Pollutants, Chemical , Hydrocarbons/toxicity , Hydrophobic and Hydrophilic Interactions , Petroleum/toxicity , Solubility , Toluene , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
16.
Chemosphere ; 266: 129017, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33261842

ABSTRACT

This work describes a novel application of atmospheric pressure gas chromatography time-of-flight mass spectrometry (APGC-TOF-MS) combined with solid-phase microextraction (SPME) for the simultaneous analysis of hydrocarbons and naphthenic acids (NAs) species in raw and ozone-treated oil sands process water (OSPW). SPME method using polydimethylsiloxane (PDMS)-coated fibers was validated using gas chromatography with flame ionization detector (GC-FID) to ensure the SPME extractions were operated appropriately. The ionization pathways of the hydrocarbon species in OSPW in the APGC source were verified by analyzing a mixture of eight polyaromatic hydrocarbons which were ionized primarily via charge transfer to produce [M+] while NAs in OSPW were found to be ionized through protonation to generate [MH+] in the wet APGC source. SPME/APGC-TOF-MS analysis demonstrated a different composition profile in OSPW #1, with 74.5% of hydrocarbon species, 23.4% of O2-NAs, and 2.1% of the oxidized NA species at extraction pH 2.0 compared with that obtained by UPLC-TOF-MS analysis (36.9% of O2-NAs, 26.8% of O3-NAs, 24.9% of O4-NAs, 9.1% of O5-NAs, 2.3% of O6-NAs). Moreover, the peak areas of the total NAs and the total peak areas of NAs + hydrocarbons measured by SPME/APGC-TOF-MS correlated excellently with the total NA concentration determined by UPLC-TOF-MS (R2 = 0.90) and the concentrations of the total acid-extractable organics determined by SPME/GC-FID (R2 = 0.98), respectively. APGC-TOF-MS integrated with the SPME techniques could extend the range of target compounds and be a promising alternative to evaluate and characterize NAs and hydrocarbon in different water types.


Subject(s)
Oil and Gas Fields , Water Pollutants, Chemical , Atmospheric Pressure , Carboxylic Acids/analysis , Gas Chromatography-Mass Spectrometry , Water , Water Pollutants, Chemical/analysis
17.
Chemosphere ; 263: 128081, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33297080

ABSTRACT

Distribution and elimination of petroleum products can be predicted in aerobic wastewater treatment plants (WWTPs) using models such as multimedia fate model SimpleTreat. An advantage of the SimpleTreat model is that it only requires a few basic properties of a chemical in wastewater to calculate partitioning, biodegradation and ultimately emissions to air, surface water and produced sludge. The SimpleTreat model structure reflects a WWTP scheme. However, refinery WWTPs typically incorporate more advanced treatment processes such as dissolved air flotation (DAF), a process that clarifies wastewaters by the removal of suspended matter such as oil or solids. The objective of this work was to develop a WWTP removal model that includes DAF treatment. To understand how including a DAF in the model affects the predicted concentrations of petroleum constituents in effluent, we replaced the primary sedimentation module in SimpleTreat with a module simulating DAF. Subsequently, we compared results from the WWTP-DAF model with results obtained with the original SimpleTreat model for a library of over 1500 representative hydrocarbon constituents. The increased air-water exchange in a WWTP-DAF unit resulted in higher predicted removal of volatile constituents. Predicted removal with DAF was on average 17% larger than removal with primary sedimentation. We compared modelled results with measured removal data from the literature, which supported that this model refinement continues to improve the technical basis of assessment of petroleum products.


Subject(s)
Petroleum , Sewage , Biodegradation, Environmental , Hydrocarbons , Waste Disposal, Fluid , Wastewater
18.
Sci Total Environ ; 732: 139293, 2020 Aug 25.
Article in English | MEDLINE | ID: mdl-32438147

ABSTRACT

Biodegradation is a major determinant of chemical persistence in the environment and an important consideration for PBT and environmental risk assessments. It is influenced by several environmental factors including temperature and microbial community structure. According to REACH guidance, a temperature correction based on the Arrhenius equation is recommended for chemical persistence data not performed at the recommended EU mean surface water temperature. Such corrections, however, can lead to overly conservative P/vP assessments. In this paper, the relevance of this temperature correction is assessed for petroleum hydrocarbons, using measured surface water (marine and freshwater) degradation half-time (DT50) and degradation half-life (HL) data compiled from relevant literature. Stringent screening criteria were used to specifically select data from biodegradation tests containing indigenous microbes and conducted at temperatures close to their ambient sampling temperature. As a result, ten independent studies were identified, with 993 data points covering 326 hydrocarbon constituents. These data were derived from tests conducted with natural seawater, or freshwater, at temperatures ranging from 5 to 21 °C. Regressions were performed on the full hydrocarbon dataset and on several individual hydrocarbons. The results were compared to the trend as predicted by the Arrhenius equation and using the activation energy (Ea) as recommend in the REACH Guidance. The comparison shows that the correction recommended in REACH Guidance over predicts the effect of temperature on hydrocarbon biodegradation. These results contrast with temperature manipulated inocula where the test temperature is different from the ambient sampling temperature. In these manipulated systems, the effect of temperature follows the Arrhenius equation more closely. In addition, a more striking effect of temperature on the lag phase was observed with longer lag phases more apparent at lower temperatures. This indicates that the effect of temperature may indeed be even lower when considering hydrocarbon biodegradation without the initial lag phase.


Subject(s)
Biodegradation, Environmental , Fresh Water , Hydrocarbons , Petroleum , Seawater
19.
Environ Toxicol Chem ; 39(2): 269-286, 2020 02.
Article in English | MEDLINE | ID: mdl-31569266

ABSTRACT

Ionizable organic chemicals (IOCs) such as organic acids and bases are an important substance class requiring aquatic hazard evaluation. Although the aquatic toxicity of IOCs is highly dependent on the water pH, many toxicity studies in the literature cannot be interpreted because pH was not reported or not kept constant during the experiment, calling for an adaptation and improvement of testing guidelines. The modulating influence of pH on toxicity is mainly caused by pH-dependent uptake and bioaccumulation of IOCs, which can be described by ion-trapping and toxicokinetic models. The internal effect concentrations of IOCs were found to be independent of the external pH because of organisms' and cells' ability to maintain a stable internal pH milieu. If the external pH is close to the internal pH, existing quantitative structure-activity relationships (QSARs) for neutral organics can be adapted by substituting the octanol-water partition coefficient by the ionization-corrected liposome-water distribution ratio as the hydrophobicity descriptor, demonstrated by modification of the target lipid model. Charged, zwitterionic and neutral species of an IOC can all contribute to observed toxicity, either through concentration-additive mixture effects or by interaction of different species, as is the case for uncoupling of mitochondrial respiration. For specifically acting IOCs, we recommend a 2-step screening procedure with ion-trapping/QSAR models used to predict the baseline toxicity, followed by adjustment using the toxic ratio derived from in vitro systems. Receptor- or plasma-binding models also show promise for elucidating IOC toxicity. The present review is intended to help demystify the ecotoxicity of IOCs and provide recommendations for their hazard and risk assessment. Environ Toxicol Chem 2020;39:269-286. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Subject(s)
Aquatic Organisms/drug effects , Ecotoxicology/methods , Hazardous Substances/toxicity , Models, Theoretical , Organic Chemicals/toxicity , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Hazardous Substances/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Organic Chemicals/chemistry , Quantitative Structure-Activity Relationship , Water/chemistry , Water Pollutants, Chemical/chemistry
20.
Anal Chim Acta ; 1086: 16-28, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31561791

ABSTRACT

Water solubility is one of the most important and frequently used physical-chemical properties of chemicals. It is crucial within several industrial sectors, in research and in the regulatory sector e.g. for the risk and hazard assessment of chemicals. The most recent OECD guideline (Test No. 105) for measuring solubility is from 1995 and limited to mono-constituent, stable and non-volatile substances. This OECD guideline and the described methods are not suited for several groups of difficult-to-test substances, such as highly hydrophobic chemicals, volatile chemicals, surfactants and mixtures. The aim of this paper is to review solubility measurement methods for difficult-to-test substances on a technical, analytical and scientific level. Methods to handle highly hydrophobic chemicals and volatile chemicals, and methods to rapidly saturate water with fast degrading chemicals are reviewed. A decision tree is presented outlining the preferred choice of method for each chemical group. This review also includes measurement methods for critical micelle concentrations that set the upper concentration limit for freely dissolved surfactants. Finally, concepts and strategies to measure solubility parameters for mixtures, including multi-constituent substances and chemical substances of unknown or variable composition, are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL