Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 4(7): 2390-2403, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-33435104

ABSTRACT

The aim of this study was to develop a formulation with a sustained intra-articular release of the anti-inflammatory drug tacrolimus. Drug release kinetics from the prepared tacrolimus loaded monodisperse biodegradable microspheres based on poly(d-l-lactide-PEG)-b-poly(l-lactide) multiblock copolymers were tunable by changing polymer composition, particularly hydrophobic-hydrophilic block ratio. The monospheres were 30 µm and released the drug, depending on the formulation, in 7 to >42 days. The formulation exhibiting sustained release for 1 month was selected for further in vivo evaluation. Rat knees were injected with three different doses of tacrolimus (10 wt %) loaded monospheres (2.5, 5.0, and 10 mg), contralateral control knees with saline. Micro-CT and histology showed no negative changes on cartilage, indicating good biocompatibility. Minor osteophyte formation was seen in a dose dependent fashion, suggesting local drug release and therapeutic action thereof. To investigate in vivo drug release, tacrolimus monospheres were injected into horse joints, after which multiple blood and synovial fluid samples were taken. Sustained intra-articular release was seen during the entire four-week follow-up, with negligible systemic drug concentrations (<1 ng/mL), confirming the feasibility of local intra-articular drug delivery without provoking systemic effects. Intra-articular injection of unloaded monospheres led to a transient inflammatory reaction, measured by total synovial leucocyte count (72 h). This reaction was significantly lower in joints injected with tacrolimus loaded monospheres, showing not only the successful local tacrolimus delivery but also local anti-inflammatory action. This local anti-inflammatory potential without systemic side-effects can be beneficial in the treatment of inflammatory joint diseases, among which is osteoarthritis.

2.
Acta Biomater ; 48: 401-414, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27816621

ABSTRACT

In this study, we investigated the use of microspheres with a narrow particle size distribution ('monospheres') composed of biodegradable poly(DL-lactide)-PEG-poly(DL-lactide)-b-poly(L-lactide) multiblock copolymers that are potentially suitable for local sustained drug release in articular joints. Monospheres with sizes of 5, 15 and 30µm and a narrow particle size distribution were prepared by a micro-sieve membrane emulsification process. During in vitro degradation, less crystallinity, higher swelling and accelerated mass loss during was observed with increasing the PEG content of the polymer. The monospheres were tested in both a small (mice/rat) and large animal model (horse). In vivo imaging after injection with fluorescent dye loaded microspheres in mice knees showed that monospheres of all sizes retained within the joint for at least 90days, while the same dose of free dye redistributed to the whole body within the first day after intra-articular injection. Administration of monospheres in equine carpal joints caused a mild transient inflammatory response without any clinical signs and without degradation of the cartilage, as evidenced by the absence of degradation products of sulfated glycosaminoglycans or collagen type 2 in the synovial fluid. The excellent intra-articular biocompatibility was confirmed in rat knees, where µCT-imaging and histology showed neither changes in cartilage quality nor quantity. Given the good intra-articular retention and the excellent biocompatibility, these novel poly(DL-lactide)-PEG-poly(DL-lactide)-b-poly(L-lactide)-based monospheres can be considered a suitable platform for intra-articular drug delivery. STATEMENT OF SIGNIFICANCE: This paper demonstrates the great potential in intra-articular drug delivery of monodisperse biodegradable microspheres which were prepared using a new class of biodegradable multi-block copolymers and a unique membrane emulsification process allowing the preparation of microspheres with a narrow particle size distribution (monospheres) leading to multiple advantages like better injectability, enhanced reproducibility and predictability of the in vivo release kinetics. We report not only on the synthesis and preparation, but also in vitro characterization, followed by in vivo testing of intra-articular biocompatibility of the monospheres in both a small and a large animal model. The favourable intra-articular biocompatibility combined with the prolonged intra-articular retention (>90days) makes these monospheres an interesting drug delivery platform. What should also be highlighted is the use of horses; a very accurate translational model for the human situation, making the results not only relevant for equine healthcare, but also for the development of novel human OA therapies.


Subject(s)
Materials Testing/methods , Microspheres , Polyesters/chemistry , Polyethylene Glycols/chemistry , Animals , Biocompatible Materials/pharmacology , Cartilage/drug effects , Fluorescence , Horses , Injections, Intra-Articular , Kinetics , Magnetic Resonance Spectroscopy , Male , Mice , Molecular Weight , Particle Size , Polyesters/chemical synthesis , Polyethylene Glycols/chemical synthesis , Rats, Wistar , Synovial Fluid/drug effects , Temperature , X-Ray Microtomography
3.
Biomaterials ; 53: 426-36, 2015.
Article in English | MEDLINE | ID: mdl-25890740

ABSTRACT

In this study, the intra-articular tolerability and suitability for local and sustained release of an in situ forming gel composed of an acetyl-capped poly(ε-caprolactone-co-lactide)-b-poly(ethylene glycol)-b-poly(ε-caprolactone-co-lactide) (PCLA-PEG-PCLA) copolymer loaded with celecoxib was investigated in horse joints. The systems were loaded with two dosages of celecoxib, 50 mg/g ('low CLB gel') and 260 mg/g ('high CLB gel'). Subsequently, they were injected into the joints of five healthy horses. For 72 h after intra-articular injection, they induced a transient inflammatory response, which was also observed after application of Hyonate(®), a commercial formulation containing hyaluronic acid for the intra-articular treatment of synovitis in horses. However, only after administration of the 'high CLB gel' the horses showed signs of discomfort (lameness score: 1.6 ± 1.3 on a 5-point scale) 1 day after injection, which completely disappeared 3 days after injection. Importantly, there was no indication of cartilage damage. Celecoxib Cmax in the joints was reached at 8 h and 24 h after administration of the 'low CLB gel' and 'high CLB gel', respectively. In the joints, concentrations of celecoxib were detected 4 weeks post administration. Celecoxib was also detected in plasma at concentrations of 150 ng/ml at day 3 post administration and thereafter its concentration dropped below the detection limit. These results show that the systems were well tolerated after intra-articular administration and showed local and sustained release of celecoxib for 4 weeks with low and short systemic exposure to the drug, demonstrating that these injectable in situ forming hydrogels are promising vehicles for intra-articular drug delivery.


Subject(s)
Celecoxib/administration & dosage , Cyclooxygenase 2 Inhibitors/administration & dosage , Joints/metabolism , Polyesters/chemistry , Polyethylene Glycols/chemistry , Acetylation , Animals , Celecoxib/pharmacokinetics , Cyclooxygenase 2 Inhibitors/pharmacokinetics , Drug Carriers , Gels , Horses , Proton Magnetic Resonance Spectroscopy , Synovial Fluid/metabolism , X-Ray Diffraction
4.
Biomaterials ; 35(27): 7919-28, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24952978

ABSTRACT

In this study, we investigated the in vitro and in vivo properties and performance of a celecoxib-loaded hydrogel based on a fully acetyl-capped PCLA-PEG-PCLA triblock copolymer. Blends of different compositions of celocoxib, a drug used for pain management in osteoarthritis, and the acetyl-capped PCLA-PEG-PCLA triblock copolymer were mixed with buffer to yield temperature-responsive gelling systems. These systems containing up to 50 mg celecoxib/g gel, were sols at room temperature and converted into immobile gels at 37 °C. In vitro, release of celecoxib started after a ∼10-day lag phase followed by a sustained release of ∼90 days. The release was proven to be mediated by polymer dissolution from the gels. In vivo (subcutaneous injection in rats) experiments showed an initial celecoxib release of ∼30% during the first 3 days followed by a sustained release of celecoxib for 4-8 weeks. The absence of a lag phase and the faster release seen in vivo were likely due to the enhanced celecoxib solubility in biological fluids and active degradation of the gel by macrophages. Finally, intra-articular biocompatibility of the 50 mg/g celecoxib-loaded gel was demonstrated using µCT-scanning and histology, where no cartilage or bone changes were observed following injection into the knee joints of healthy rats. In conclusion, this study shows that celecoxib-loaded acetyl-capped PCLA-PEG-PCLA hydrogels form a safe drug delivery platform for sustained intra-articular release.


Subject(s)
Biocompatible Materials/chemistry , Drug Liberation , Gels/chemistry , Knee Joint/drug effects , Polyesters/chemistry , Polyethylene Glycols/chemistry , Pyrazoles/pharmacology , Sulfonamides/pharmacology , Temperature , Acetylation , Animals , Calorimetry, Differential Scanning , Celecoxib , Chromatography, Gel , Knee Joint/physiology , Male , Phase Transition , Proton Magnetic Resonance Spectroscopy , Pyrazoles/chemistry , Pyrazoles/pharmacokinetics , Rats, Wistar , Rheology , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics
5.
Biomaterials ; 34(32): 8002-11, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23891396

ABSTRACT

Sustained intra-articular drug delivery opens up new opportunities for targeted treatment of osteoarthritis. In this study, we investigated the in vitro and in vivo properties and performance of a newly developed hydrogel based on acyl-capped PCLA-PEG-PCLA specifically designed for intra-articular use. The hydrogel formulation consisted of a blend of polymers either capped with acetyl, or with 2-(2',3',5',-triiodobenzoyl, TIB) moieties. TIB was added to visualize the gel using µCT, enabling longitudinal quantification of its degradation. Blends containing TIB-capped polymer degraded in vitro (37 °C; pH 7.4 buffer) through dissolution over a period of ~20 weeks, and degraded slightly faster (~12 weeks) after subcutaneous injection in rats. This in vivo acceleration was likely due to active (enzymatic) degradation, shown by changes in polymer composition and molecular weight as well as the presence of macrophages. After intra-articular administration in rats, the visualized gel gradually lost signal intensity over the course of 4 weeks. Good cytocompatibility of acetyl-capped polymer based hydrogel was proven in vitro on erythrocytes and chondrocytes. Moreover, intra-articular biocompatibility was demonstrated using µCT-imaging and histology, since both techniques showed no changes in cartilage quality and/or quantity.


Subject(s)
Biocompatible Materials/chemistry , Cartilage/drug effects , Drug Delivery Systems , Hydrogels/chemistry , Polyesters/chemistry , Polyethylene Glycols/chemistry , Animals , Cells, Cultured , Chondrocytes/drug effects , Horses , Hydrogen-Ion Concentration , Injections, Intra-Articular , Knee Joint/drug effects , Male , Rats , Rats, Wistar
6.
Am J Physiol Heart Circ Physiol ; 298(3): H1038-47, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20061549

ABSTRACT

ROS have been implicated in the development of pathological ventricular hypertrophy and the ensuing contractile dysfunction. Using the rat monocrotaline (MCT) model of pulmonary arterial hypertension (PAH), we recently reported oxidative stress in the failing right ventricle (RV) with no such stress in the left ventricle of the same hearts. We used the antioxidant EUK-134 to assess the role of ROS in the pathological remodeling and dysfunction of the RV. PAH was induced by an injection of MCT (80 mg/kg, day 0), treatment with EUK-134 (25 mg/kg, once every 2 days) of control and MCT-injected animals [congestive heart failure (CHF) group] was started on day 10, and animals were analyzed on day 22. EUK-134 treatment of the CHF group attenuated cardiomyocyte hypertrophy and associated changes in mRNA expression (myosin heavy chain-beta and deiodinase type 3). It also reduced RV oxidative stress and proapoptotic signaling and prevented interstitial fibrosis. Cardiac MRI showed that ROS scavenging did not affect the 37% increase in end-diastolic volume of the RV in the CHF relative to the control group, but the threefold increase in end-systolic volume was reduced by 42% in the EUK-134-treated CHF group. The improved systolic function was confirmed using echocardiography by an assessment of tricuspid annular plane systolic excursion. These data indicate an important role of ROS in RV cardiomyocyte hypertrophy and contractile dysfunction due to PAH and show the potential of EUK-class antioxidants as complementary therapeutics in the treatment of RV dysfunction in PAH.


Subject(s)
Antioxidants/therapeutic use , Heart Failure/etiology , Heart Failure/prevention & control , Hypertension, Pulmonary/complications , Organometallic Compounds/therapeutic use , Salicylates/therapeutic use , Animals , Disease Models, Animal , Heart Failure/physiopathology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/physiopathology , Hypertrophy, Right Ventricular/physiopathology , Hypertrophy, Right Ventricular/prevention & control , Male , Monocrotaline/adverse effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Ventricular Dysfunction, Right/physiopathology , Ventricular Dysfunction, Right/prevention & control , Ventricular Remodeling/physiology
7.
Am J Physiol Heart Circ Physiol ; 297(5): H1752-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19734361

ABSTRACT

Right heart failure in pulmonary arterial hypertension (PH) is associated with mechanical ventricular dyssynchrony, which leads to impaired right ventricular (RV) function and, by adverse diastolic interaction, to impaired left ventricular (LV) function as well. However, therapies aiming to restore synchrony by pacing are currently not available. In this proof-of-principle study, we determined the acute effects of RV pacing on ventricular dyssynchrony in PH. Chronic PH with right heart failure was induced in rats by injection of monocrotaline (80 mg/kg). To validate for PH-related ventricular dyssynchrony, rats (6 PH, 6 controls) were examined by cardiac magnetic resonance imaging (9.4 T), 23 days after monocrotaline or sham injection. In a second group (10 PH, 4 controls), the effects of RV pacing were studied in detail, using Langendorff-perfused heart preparations. In PH, septum bulging was observed, coinciding with a reversal of the transseptal pressure gradient, as observed in clinical PH. RV pacing improved RV systolic function, compared with unpaced condition (maximal first derivative of RV pressure: +8.5 + or - 1.3%, P < 0.001). In addition, RV pacing markedly decreased the pressure-time integral of the transseptal pressure gradient when RV pressure exceeds LV pressure, an index of adverse diastolic interaction (-24 + or - 9%, P < 0.01), and RV pacing was able to resynchronize time of RV and LV peak pressure (unpaced: 9.8 + or - 1.2 ms vs. paced: 1.7 + or - 2.0 ms, P < 0.001). Finally, RV pacing had no detrimental effects on LV function or coronary perfusion, and no LV preexcitation occurred. Taken together, we demonstrate that, in experimental PH, RV pacing improves RV function and diminishes adverse diastolic interaction. These findings provide a strong rationale for further in vivo explorations.


Subject(s)
Cardiac Pacing, Artificial , Heart Failure/therapy , Hypertension, Pulmonary/therapy , Ventricular Dysfunction, Right/therapy , Ventricular Function, Right , Animals , Chronic Disease , Disease Models, Animal , Heart Failure/chemically induced , Heart Failure/pathology , Heart Failure/physiopathology , Heart Septum/pathology , Heart Septum/physiopathology , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/complications , Hypertension, Pulmonary/pathology , Hypertension, Pulmonary/physiopathology , In Vitro Techniques , Magnetic Resonance Imaging , Male , Monocrotaline , Myocardial Contraction , Perfusion , Rats , Reproducibility of Results , Time Factors , Ventricular Dysfunction, Right/chemically induced , Ventricular Dysfunction, Right/pathology , Ventricular Dysfunction, Right/physiopathology , Ventricular Function, Left , Ventricular Pressure
8.
J Clin Invest ; 118(3): 975-83, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18259611

ABSTRACT

Thyroid hormone is a critical determinant of cellular metabolism and differentiation. Precise tissue-specific regulation of the active ligand 3,5,3'-triiodothyronine (T3) is achieved by the sequential removal of iodine groups from the thyroid hormone molecule, with type 3 deiodinase (D3) comprising the major inactivating pathway that terminates the action of T3 and prevents activation of the prohormone thyroxine. Using cells endogenously expressing D3, we found that hypoxia induced expression of the D3 gene DIO3 by a hypoxia-inducible factor-dependent (HIF-dependent) pathway. D3 activity and mRNA were increased both by hypoxia and by hypoxia mimetics that increase HIF-1. Using ChIP, we found that HIF-1alpha interacted specifically with the DIO3 promoter, indicating that DIO3 may be a direct transcriptional target of HIF-1. Endogenous D3 activity decreased T3-dependent oxygen consumption in both neuronal and hepatocyte cell lines, suggesting that hypoxia-induced D3 may reduce metabolic rate in hypoxic tissues. Using a rat model of cardiac failure due to RV hypertrophy, we found that HIF-1alpha and D3 proteins were induced specifically in the hypertrophic myocardium of the RV, creating an anatomically specific reduction in local T3 content and action. These results suggest a mechanism of metabolic regulation during hypoxic-ischemic injury in which HIF-1 reduces local thyroid hormone signaling through induction of D3.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/physiology , Hypoxia/metabolism , Iodide Peroxidase/physiology , Ischemia/metabolism , Thyroid Hormones/metabolism , Animals , Enzyme Induction , Hypertrophy, Right Ventricular/metabolism , Male , Rats , Rats, Wistar , Signal Transduction , Triiodothyronine/physiology
9.
Cardiovasc Res ; 75(4): 770-81, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17582388

ABSTRACT

OBJECTIVE: Reactive oxygen species (ROS) have been implicated in the progression of ventricular hypertrophy to congestive heart failure. However, the source of increased oxidative stress in cardiomyocytes remains unclear. METHODS: Here we examined NADPH oxidase and mitochondria as sources of ventricular ROS production in a rat model of right-ventricular (RV) failure (CHF) induced by pulmonary arterial hypertension (PAH). RESULTS: Western analysis showed increased expression of the catalytic subunit gp91(phox) of NADPH oxidase as well as its activator Rac1 in RV in CHF compared to non-failing myocardium (CON). In addition, analysis of mitochondrial respiratory chain complexes showed a selective increase in the expression of Complex II subunit B. Using lucigenin chemiluminescence, tissue homogenates showed increased NADPH oxidase and Complex II-dependent ROS production in failing RV, with no increase in the left ventricle. Functional analyses of isolated RV mitochondria showed an increase in Complex II activity as well as Complex II-associated ROS production in CHF vs CON. An increase in the reduction state of the mitochondrial Coenzyme Q in failing RV, together with increased expression of hypoxia-inducible factor 1 alpha, indicated conditions in CHF that strongly favor ROS production by mitochondria. Reduced ROS-scavenging capacity was indicated by decreased mRNA levels of superoxide dismutases. Oxidative stress in failing RV was indicated by a two-fold increase in the level of phospho-p38 mitogen-activated protein kinase and by immunohistochemical evidence of extensive protein nitration. CONCLUSIONS: These data show that the development of PAH-induced RV heart failure is associated with an increased capacity for ROS production by NADPH oxidase as well as mitochondria. The selective increase in expression and activity of mitochondrial Complex II may be particularly important for ventricular ROS production in heart failure.


Subject(s)
Electron Transport Complex II/metabolism , Mitochondria, Heart/metabolism , Reactive Oxygen Species/metabolism , Ventricular Dysfunction, Right/metabolism , Animals , Biomarkers/analysis , Biomechanical Phenomena , Heart Ventricles , Hypoxia-Inducible Factor 1, alpha Subunit/analysis , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Luminescence , Male , Membrane Glycoproteins/analysis , Microscopy, Fluorescence , Mitochondria, Heart/ultrastructure , Monocrotaline , Myocardium/metabolism , Myocardium/ultrastructure , NADPH Oxidase 2 , NADPH Oxidases/analysis , NADPH Oxidases/metabolism , Oxidative Stress , Rats , Rats, Wistar , Reverse Transcriptase Polymerase Chain Reaction , Ubiquinone/metabolism , Ventricular Dysfunction, Right/pathology , rac1 GTP-Binding Protein/analysis
10.
Physiol Genomics ; 21(3): 314-23, 2005 May 11.
Article in English | MEDLINE | ID: mdl-15728335

ABSTRACT

Myocardial right ventricular (RV) hypertrophy due to pulmonary hypertension is aimed at normalizing ventricular wall stress. Depending on the degree of pressure overload, RV hypertrophy may progress to a state of impaired contractile function and heart failure, but this cannot be discerned during the early stages of ventricular remodeling. We tested whether critical differences in gene expression profiles exist between ventricles before the ultimate development of either a compensated or decompensated hypertrophic phenotype. Both phenotypes were selectively induced in Wistar rats by a single subcutaneous injection of either a low or a high dose of the pyrrolizidine alkaloid monocrotaline (MCT). Spotted oligonucleotide microarrays were used to investigate pressure-dependent cardiac gene expression profiles at 2 wk after the MCT injections, between control rats and rats that would ultimately develop either compensated or decompensated hypertrophy. Clustering of significantly regulated genes revealed specific expression profiles for each group, although the degree of hypertrophy was still similar in both. The ventricles destined to progress to failure showed activation of pro-apoptotic pathways, particularly related to mitochondria, whereas the group developing compensated hypertrophy showed blocked pro-death effector signaling via p38-MAPK, through upregulation of MAPK phosphatase-1. In summary, we show that, already at an early time point, pivotal differences in gene expression exist between ventricles that will ultimately develop either a compensated or a decompensated phenotype, depending on the degree of pressure overload. These data reveal genes that may provide markers for the early prediction of clinical outcome as well as potential targets for early intervention.


Subject(s)
Heart Failure/genetics , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Right Ventricular/genetics , RNA, Messenger/genetics , Animals , Atrial Natriuretic Factor/genetics , Calcium-Transporting ATPases/genetics , DNA Primers , Disease Models, Animal , Gene Expression Profiling , Hypertension/genetics , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/genetics , Male , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , RNA/genetics , RNA/isolation & purification , Rats , Rats, Wistar , Sarcoplasmic Reticulum Calcium-Transporting ATPases
SELECTION OF CITATIONS
SEARCH DETAIL