Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 14: 1082176, 2023.
Article in English | MEDLINE | ID: mdl-36908624

ABSTRACT

Background: Migraine is a widespread and prevalent disease with a complex pathophysiology, of which neuroinflammation and increased pain sensitivity have been suggested to be involved. Various studies have investigated the presence of different inflammatory markers in migraineurs and investigated the role of inflammation in inflammatory models with complete Freund's adjuvant (CFA) or inflammatory soup added to the dura mater. Objective: The aim of the current study was to examine whether application of CFA to the dura mater would cause behavioral alterations that are migraine relevant. In addition, we investigated the potential mitigating effects of fremanezumab, a CGRP (calcitonin gene-related peptide) specific antibody, following CFA application. Methods: Male Sprague-Dawley rats were randomly divided into six groups: fresh (n = 7), fresh + carprofen (n = 6), fresh + anti-CGRP (n = 6), sham (n = 7), CFA (n = 16), CFA + anti-CGRP (n = 8). CFA was applied for 15 min on a 3 × 3 mm clearing of the skull exposing the dura mater of male Sprague-Dawley rats. We applied the Light/Dark box and Open Field test, combined with the electronic von Frey test to evaluate outcomes. Finally, we observed CGRP immunoreactivity in the trigeminal ganglion. Results: No differences were observed in the Light/Dark box test. The Open Field test detected behavior differences, notably that sham rats spend less time in the central zone, reared less and groomed more than fresh + carprofen rats. The other groups were not significantly different compared to sham rats, indicating that activation of the TGVS is present in sham surgery and cannot be exacerbated by CFA. However, for the allodynia, we observed specific periorbital sensitization, not observed in the sham animals. This could not be mitigated by fremanezumab, although it clearly reduced the amount of CGRP positive fibers. Conclusion: CFA surgically administered to the dura causes periorbital allodynia and increases CGRP positive fibers in the trigeminal ganglion. Fremanezumab does not reduce periorbital allodynia even though it reduces CGRP positive fibers in the TG. Further work is needed to investigate whether CFA administered to the dura could be used as a non-CGRP inflammatory migraine model.

2.
J Headache Pain ; 23(1): 26, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35177004

ABSTRACT

BACKGROUND: 5-Hydroxytryptamine (5-HT) receptors 1B, 1D and 1F have key roles in migraine pharmacotherapy. Selective agonists targeting these receptors, such as triptans and ditans, are effective in aborting acute migraine attacks and inhibit the in vivo release of calcitonin gene-related peptide (CGRP) in human and animal models. The study aimed to examine the localization, genetic expression and functional aspects of 5- HT1B/1D/1F receptors in the trigeminal system in order to further understand the molecular sites of action of triptans (5-HT1B/1D) and ditans (5-HT1F). METHODS: Utilizing immunohistochemistry, the localization of 5-HT and of 5-HT1B/1D/1F receptors was examined in rat trigeminal ganglion (TG) and combined with quantitative polymerase chain reaction to quantify the level of expression for 5-HT1B/1D/1F receptors in the TG. The functional role of these receptors was examined ex vivo with a capsaicin/potassium induced 5-HT and CGRP release. RESULTS: 5-HT immunoreactivity (ir) was observed in a minority of CGRP negative C-fibres, most neuron somas and faintly in A-fibres and Schwann cell neurolemma. 5-HT1B/1D receptors were expressed in the TG, while the 5-HT1F receptor displayed a weak ir. The 5-HT1D receptor co-localized with receptor activity-modifying protein 1 (RAMP1) in Aδ-fibres in the TG, while 5-HT1B-ir was weakly expressed and 5-HT1F-ir was not detected in these fibres. None of the 5-HT1 receptors co-localized with CGRP-ir in C-fibres. 5-HT1D receptor mRNA was the most prominently expressed, followed by the 5-HT1B receptor and lastly the 5-HT1F receptor. The 5-HT1B and 5-HT1D receptor antagonist, GR127935, could reverse the inhibitory effect of Lasmiditan (a selective 5-HT1F receptor agonist) on CGRP release in the soma-rich TG but not in soma-poor TG or dura mater. 5-HT release in the soma-rich TG, and 5-HT content in the baseline samples, negatively correlated with CGRP levels, showing for the first time a physiological role for 5-HT induced inhibition. CONCLUSION: This study reveals the presence of a subgroup of C-fibres that store 5-HT. The data shows high expression of 5-HT1B/1D receptors and suggests that the 5-HT1F receptor is a relatively unlikely target in the rat TG. Furthermore, Lasmiditan works as a partial agonist on 5-HT1B/1D receptors in clinically relevant dose regiments.


Subject(s)
Serotonin , Tryptamines , Animals , Benzamides , Calcitonin Gene-Related Peptide/metabolism , Piperidines/pharmacology , Pyridines , Rats , Receptor, Serotonin, 5-HT1B/genetics , Receptor, Serotonin, 5-HT1B/metabolism , Receptor, Serotonin, 5-HT1D/metabolism , Serotonin/metabolism , Trigeminal Ganglion/metabolism , Tryptamines/pharmacology
3.
J Headache Pain ; 23(1): 30, 2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35189809

ABSTRACT

BACKGROUND: Based on the current understanding of the role of neuropeptide signalling in migraine, we explored the therapeutic potential of a specific cannabinoid agonist. The aim of the present study was to examine the effect of the synthetic endocannabinoid (eCB) analogue, arachidonyl-2'-chloroethylamide (ACEA), on calcitonin gene-related peptide (CGRP) release in the dura and trigeminal ganglion (TG), as cannabinoids are known to activate Gi/o-coupled cannabinoid receptors type 1 (CB1), resulting in neuronal inhibition. METHODS: The experiments were performed using the hemi-skull model and dissected TGs from male Sprague-Dawley rats. CGRP release was induced by either 60 mM K+ (for depolarization-induced stimulation) or 100 nM capsaicin (for transient receptor potential vanilloid 1 (TRPV1) -induced stimulation) and measured using an enzyme-linked immunosorbent assay. The analysis of CGRP release data was combined with immunohistochemistry in order to study the cellular localization of CB1, cannabinoid receptor type 2 (CB2), CGRP and receptor activity modifying protein 1 (RAMP1), a subunit of the functional CGRP receptor, in the TG. RESULTS: CB1 was predominantly expressed in neuronal somas in which colocalization with CGRP was observed. Furthermore, CB1 exhibited colocalization with RAMP1 in neuronal Aδ-fibres but was not clearly expressed in the CGRP-immunoreactive C-fibres. CB2 was mainly expressed in satellite glial cells and did not show substantial colocalization with either CGRP or RAMP1. Without stimulation, 140 nM ACEA per se caused a significant increase in CGRP release in the dura but not TG, compared to vehicle. Furthermore, 140 nM ACEA did not significantly modify neither K+- nor capsaicin-induced CGRP release. However, when the TRPV1 blocker AMG9810 (1 mM) was coapplied with ACEA, K+-induced CGRP release was significantly attenuated in the TG and dura. CONCLUSIONS: Results from the present study indicate that ACEA per se does not exhibit antimigraine potential due to its dual agonistic properties, resulting in activation of both CB1 and TRPV1, and thereby inhibition and stimulation of CGRP release, respectively.


Subject(s)
Calcitonin Gene-Related Peptide , Animals , Arachidonic Acids , Calcitonin Gene-Related Peptide/metabolism , Ligands , Male , Rats , Rats, Sprague-Dawley , Receptors, Cannabinoid
4.
Mol Pain ; 17: 17448069211059400, 2021.
Article in English | MEDLINE | ID: mdl-34898306

ABSTRACT

Substance P (SP) and calcitonin gene-related peptide (CGRP) have both been considered potential drug candidates in migraine therapy. In recent years, CGRP receptor inhibition has been established as an effective treatment, in particular as a prophylactic for chronic migraine. Curiously, inhibition of neurokinin receptor 1 (NK1R) failed to alleviate acute migraine attacks in clinical trials, and the neurokinins were consequently abandoned as potential antimigraine candidates. The reason behind this has remained enigmatic.Utilizing immunohistochemistry and semi-quantitative cell counts the expression of neurokinins and their associated receptors was examined in the rat trigeminal ganglion.Immunohistochemistry results revealed SP co-localization in CGRP positive neurons and C-fibres, where it mainly concentrated at boutons. Neurokinin A (NKA) was observed in a population of C-fibres and small neurons where it could co-localize with SP. In contrast, neurokinin B (NKB) did not co-localize with SP and was observed in large/medium sized neurons and Aδ-fibres. All neurokinin receptors (NK1-3R) were found to be expressed in a majority of trigeminal ganglion neurons and A-fibres.The functional release of SP and CGRP in the trigeminovascular system was stimulated with either 60 mM K+ or 100 nM capsaicin and measured with an enzyme-linked immunosorbent assay (ELISA). ELISA results established that SP can be released locally from trigeminovascular system. The released SP was comparatively minor compared to the CGRP release from stimulated dura mater, trigeminal ganglion neurons and fibres. We hypothesize that SP and CGRP signalling pathways may work in tandem to exacerbate painful stimuli in the TGV system.


Subject(s)
Migraine Disorders , Neurokinin A , Animals , Calcitonin Gene-Related Peptide , Pain , Rats , Receptors, Calcitonin Gene-Related Peptide , Trigeminal Ganglion
SELECTION OF CITATIONS
SEARCH DETAIL
...