Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Diagn Microbiol Infect Dis ; 110(2): 116423, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39121811

ABSTRACT

This study explored Mycobacterium tuberculosis (MTB) growth from tongue swabs, both experimentally infected after sampling from healthy controls, or sampled from patients with smear-microscopy confirmed pulmonary tuberculosis (PTB). For both, we evaluated the performance of NALC-NaOH/MGIT960 (MGIT), Kudoh-Ogawa (KO), and cetylpyridinium chloride-Löwenstein-Jensen (CPC/LJ) culture processing methods. Experimentally spiked swabs from 20 participants exhibited 94.4% MTB growth when inoculated within 7 days of CPC exposure, declining significantly after 14-21 days (p<0.00001). KO-processed specimens showed 100% MTB growth, with a non-significant reduction after storage (94.1%; p=0.21), and all spiked swabs yielded growth in MGIT. In the field evaluation on 99 PTB patients, MGIT isolated MTB from 89% of tongue swabs, with an 8% contamination rate, compared to 99% MGIT positivity from sputum. Solid media had lower positivity, 62% for KO and 49% for CPC/LJ, suggesting MGIT as optimal for growing MTB from tongue swabs. Further testing of presumptive PTB patients is recommended.


Subject(s)
Mycobacterium tuberculosis , Specimen Handling , Tongue , Tuberculosis, Pulmonary , Humans , Mycobacterium tuberculosis/isolation & purification , Mycobacterium tuberculosis/growth & development , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/microbiology , Tongue/microbiology , Specimen Handling/methods , Bacteriological Techniques/methods , Male , Adult , Female , Culture Media/chemistry , Middle Aged , Sputum/microbiology , Young Adult
2.
Microbiol Spectr ; 12(3): e0007024, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38334384

ABSTRACT

Previous work reported unprecedented differences in the intrinsic in vitro susceptibility of the Mycobacterium tuberculosis complex (MTBC) to pretomanid (Pa) using the Mycobacteria Growth Indicator Tube (MGIT) system. We tested 125 phylogenetically diverse strains from all known MTBC lineages (1-9) without known Pa resistance mutations and four strains with known resistance mutations as controls. This confirmed that MTBC, unlike most bacteria-antimicrobial combinations, displayed substantial differences in the intrinsic susceptibility relative to the technical variation of Pa MIC testing. This was also the case for the Middlebrook 7H11 (7H11) medium, demonstrating that these differences were not specific to MGIT. Notably, lineage 1 was confirmed to have intrinsically elevated MICs compared with lineages 2, 3, 4, and 7 (L2-4/7), underlining the urgent need for WHO to publish its decision of whether lineage 1 should be deemed treatable by BPaL(M), the now preferred all-oral regimen for treating rifampin-resistant tuberculosis. Lineages 5 and 6, which are most frequent in West Africa, responded differently to Pa, with lineage 5 being more similar to L2-4/7 and lineage 6 being more susceptible. More data are needed to determine whether 7H11 MICs are systematically lower than those in MGIT. IMPORTANCE: This study confirmed that the Mycobacterium tuberculosis complex lineage 1, responsible for 28% of global tuberculosis cases, is less susceptible to pretomanid (Pa). It also refined the understanding of the intrinsic susceptibilities of lineages 5 and 6, most frequent in West Africa, and lineages 8 and 9. Regulators must review whether these in vitro differences affect the clinical efficacy of the WHO-recommended BPaL(M) regimen and set breakpoints for antimicrobial susceptibility testing accordingly. Notably, regulators should provide detailed justifications for their decisions to facilitate public scrutiny.


Subject(s)
Anti-Infective Agents , Mycobacterium tuberculosis , Nitroimidazoles , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Microbial Sensitivity Tests , Tuberculosis/drug therapy , Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL