Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Infect Immun ; 70(9): 5096-106, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12183559

ABSTRACT

Recombinant vaccine strains of Salmonella enterica serovar Typhi capable of expressing Helicobacter pylori urease were generated by transforming strains CVD908 and CVD908-htrA with a plasmid harboring the ureAB genes under the control of an in vivo-inducible promoter. The plasmid did not interfere with the ability of either strain to replicate and persist in human monocytic cells or with their transient colonization of mouse lungs. When administered to mice intranasally, both recombinant strains elicited antiurease immune responses skewed towards a Th1 phenotype. Vaccinated mice exhibited strong immunoglobulin G2a (IgG2a)-biased antiurease antibody responses as well as splenocyte populations capable of proliferation and gamma interferon (IFNgamma) secretion in response to urease stimulation. Boosting of mice with subcutaneous injection of urease plus alum enhanced immune responses and led them to a more balanced Th1/Th2 phenotype. Following parenteral boost, IgG1 and IgG2a antiurease antibody titers were raised significantly, and strong urease-specific splenocyte proliferative responses, accompanied by IFNgamma as well as interleukin-4 (IL-4), IL-5, and IL-10 secretion, were detected. Neither immunization with urease-expressing S. enterica serovar Typhi alone nor immunization with urease plus alum alone conferred protection against challenge with a mouse-adapted strain of H. pylori; however, a vaccination protocol combining both immunization regimens was protective. This is the first report of effective vaccination against H. pylori with a combined mucosal prime-parenteral boost regimen in which serovar Typhi vaccine strains are used as antigen carriers. The significance of these findings with regard to development of a human vaccine against H. pylori and modulation of immune responses by heterologous prime-boost immunization regimens is discussed.


Subject(s)
Helicobacter pylori/enzymology , Helicobacter pylori/immunology , Salmonella typhi/enzymology , Salmonella typhi/immunology , Urease/immunology , Adjuvants, Immunologic/administration & dosage , Alum Compounds/administration & dosage , Animals , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Base Sequence , Helicobacter Infections/immunology , Helicobacter Infections/prevention & control , Helicobacter pylori/genetics , Humans , Immunity, Cellular , Immunity, Mucosal , Immunization , Immunization Schedule , Immunization, Secondary , In Vitro Techniques , Mice , Mice, Inbred BALB C , Plasmids/genetics , Salmonella typhi/genetics , Transformation, Genetic , Urease/genetics , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL