Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3924, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724518

ABSTRACT

An effective HIV-1 vaccine must elicit broadly neutralizing antibodies (bnAbs) against highly diverse Envelope glycoproteins (Env). Since Env with the longest hypervariable (HV) loops is more resistant to the cognate bnAbs than Env with shorter HV loops, we redesigned hypervariable loops for updated Env consensus sequences of subtypes B and C and CRF01_AE. Using modeling with AlphaFold2, we reduced the length of V1, V2, and V5 HV loops while maintaining the integrity of the Env structure and glycan shield, and modified the V4 HV loop. Spacers are designed to limit strain-specific targeting. All updated Env are infectious as pseudoviruses. Preliminary structural characterization suggests that the modified HV loops have a limited impact on Env's conformation. Binding assays show improved binding to modified subtype B and CRF01_AE Env but not to subtype C Env. Neutralization assays show increases in sensitivity to bnAbs, although not always consistently across clades. Strikingly, the HV loop modification renders the resistant CRF01_AE Env sensitive to 10-1074 despite the absence of a glycan at N332.


Subject(s)
Antibodies, Neutralizing , HIV Antibodies , HIV-1 , env Gene Products, Human Immunodeficiency Virus , HIV-1/immunology , Humans , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism , HIV Antibodies/immunology , Antibodies, Neutralizing/immunology , AIDS Vaccines/immunology , Neutralization Tests , HEK293 Cells , Consensus Sequence , HIV Infections/virology , HIV Infections/immunology , Protein Binding , Epitopes/immunology
2.
Nat Commun ; 15(1): 200, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172512

ABSTRACT

The repeat emergence of SARS-CoV-2 variants of concern (VoC) with decreased susceptibility to vaccine-elicited antibodies highlights the need to develop next-generation vaccine candidates that confer broad protection. Here we describe the antibody response induced by the SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine candidate adjuvanted with the Army Liposomal Formulation including QS21 (ALFQ) in non-human primates. By isolating and characterizing several monoclonal antibodies directed against the Spike Receptor Binding Domain (RBD), N-Terminal Domain (NTD), or the S2 Domain, we define the molecular recognition of vaccine-elicited cross-reactive monoclonal antibodies (mAbs) elicited by SpFN. We identify six neutralizing antibodies with broad sarbecovirus cross-reactivity that recapitulate serum polyclonal antibody responses. In particular, RBD mAb WRAIR-5001 binds to the conserved cryptic region with high affinity to sarbecovirus clades 1 and 2, including Omicron variants, while mAb WRAIR-5021 offers complete protection from B.1.617.2 (Delta) in a murine challenge study. Our data further highlight the ability of SpFN vaccination to stimulate cross-reactive B cells targeting conserved regions of the Spike with activity against SARS CoV-1 and SARS-CoV-2 variants.


Subject(s)
Nanoparticles , Severe acute respiratory syndrome-related coronavirus , Animals , Mice , Antibodies, Neutralizing , Macaca mulatta , Vaccination , Antibodies, Viral , Antibodies, Monoclonal , COVID-19 Vaccines , Ferritins , Spike Glycoprotein, Coronavirus/genetics
3.
Structure ; 32(2): 131-147.e7, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38157856

ABSTRACT

Given the continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VoCs), immunotherapeutics that target conserved epitopes on the spike (S) glycoprotein have therapeutic advantages. Here, we report the crystal structure of the SARS-CoV-2 S receptor-binding domain (RBD) at 1.95 Å and describe flexibility and distinct conformations of the angiotensin-converting enzyme 2 (ACE2)-binding site. We identify a set of SARS-CoV-2-reactive monoclonal antibodies (mAbs) with broad RBD cross-reactivity including SARS-CoV-2 Omicron subvariants, SARS-CoV-1, and other sarbecoviruses and determine the crystal structures of mAb-RBD complexes with Ab246 and CR3022 mAbs targeting the class IV site, WRAIR-2134, which binds the recently designated class V epitope, and WRAIR-2123, the class I ACE2-binding site. The broad reactivity of class IV and V mAbs to conserved regions of SARS-CoV-2 VoCs and other sarbecovirus provides a framework for long-term immunotherapeutic development strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Viral/chemistry , Binding Sites , Epitopes
4.
J Virol ; 97(7): e0159622, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37395646

ABSTRACT

Novel therapeutic monoclonal antibodies (MAbs) must accommodate comprehensive breadth of activity against diverse sarbecoviruses and high neutralization potency to overcome emerging variants. Here, we report the crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD) in complex with MAb WRAIR-2063, a moderate-potency neutralizing antibody with exceptional sarbecovirus breadth, that targets the highly conserved cryptic class V epitope. This epitope overlaps substantially with the spike protein N-terminal domain (NTD) -interacting region and is exposed only when the spike is in the open conformation, with one or more RBDs accessible. WRAIR-2063 binds the RBD of SARS-CoV-2 WA-1, all variants of concern (VoCs), and clade 1 to 4 sarbecoviruses with high affinity, demonstrating the conservation of this epitope and potential resiliency against variation. We compare structural features of additional class V antibodies with their reported neutralization capacity to further explore the utility of the class V epitope as a pan-sarbecovirus vaccine and therapeutic target. IMPORTANCE Characterization of MAbs against SARS-CoV-2, elicited through vaccination or natural infection, has provided vital immunotherapeutic options for curbing the COVID-19 pandemic and has supplied critical insights into SARS-CoV-2 escape, transmissibility, and mechanisms of viral inactivation. Neutralizing MAbs that target the RBD but do not block ACE2 binding are of particular interest because the epitopes are well conserved within sarbecoviruses and MAbs targeting this area demonstrate cross-reactivity. The class V RBD-targeted MAbs localize to an invariant site of vulnerability, provide a range of neutralization potency, and exhibit considerable breadth against divergent sarbecoviruses, with implications for vaccine and therapeutic development.


Subject(s)
Antibodies, Viral , COVID-19 , Epitopes , Severe acute respiratory syndrome-related coronavirus , Humans , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/chemistry , Antibodies, Viral/metabolism , Epitopes/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/metabolism , Severe acute respiratory syndrome-related coronavirus/chemistry , Protein Domains , Crystallography, X-Ray , Protein Structure, Quaternary , Models, Molecular , Cell Line
5.
Anal Biochem ; 674: 115198, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37302777

ABSTRACT

Western blot (WB) analysis is widely used, but obtaining consistent results can be problematic, especially when using multiple gels. This study examines WB performance by explicitly applying a method commonly used to test analytical instrumentation. Test samples were lysates from RAW 264.7 murine macrophages treated with LPS to activate MAPK and NF-kB signaling targets. Samples from the pooled cell lysates placed in every lane on multiple gels were analyzed by WBs for levels of p-ERK, ERK, IkBß and non-target protein. Different normalization methods and sample groupings were applied to the density values and the resulting coefficients of variation (CV) and ratios of maximal to minimal values (Max/Min) were compared. Ideally with identical sample replicates the CVs would be 0 and the Max/Min 1; deviation indicating introduction of variability by the WB process. Common normalizations to reduce analytical variance, total lane protein, % Control, and p-ERK/ERK ratios, did not have the lowest CVs or Max/Min values. Normalization using the sum of target protein values combined with analytical replication most effectively reduced variability, resulting CV and Max/Min values as low as 5-10% and 1.1. These methods should allow reliable interpretation of complex experiments that require samples to be placed on multiple gels.


Subject(s)
NF-kappa B , Signal Transduction , Animals , Mice , Blotting, Western , Macrophages
6.
Cell Rep Med ; 4(4): 101018, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37023746

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines demonstrate reduced protection against acquisition of BA.5 subvariant but are still effective against severe disease. However, immune correlates of protection against BA.5 remain unknown. We report the immunogenicity and protective efficacy of vaccine regimens consisting of the vector-based Ad26.COV2.S vaccine and the adjuvanted spike ferritin nanoparticle (SpFN) vaccine against a high-dose, mismatched Omicron BA.5 challenge in macaques. The SpFNx3 and Ad26 + SpFNx2 regimens elicit higher antibody responses than Ad26x3, whereas the Ad26 + SpFNx2 and Ad26x3 regimens induce higher CD8 T cell responses than SpFNx3. The Ad26 + SpFNx2 regimen elicits the highest CD4 T cell responses. All three regimens suppress peak and day 4 viral loads in the respiratory tract, which correlate with both humoral and cellular immune responses. This study demonstrates that both homologous and heterologous regimens involving Ad26.COV2.S and SpFN vaccines provide robust protection against a mismatched BA.5 challenge in macaques.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Humans , Animals , Macaca , Ad26COVS1 , COVID-19/prevention & control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Ferritins
7.
Nat Commun ; 14(1): 580, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737435

ABSTRACT

Despite rapid and ongoing vaccine and therapeutic development, SARS-CoV-2 continues to evolve and evade, presenting a need for next-generation diverse therapeutic modalities. Here we show that nurse sharks immunized with SARS-CoV-2 recombinant receptor binding domain (RBD), RBD-ferritin (RFN), or spike protein ferritin nanoparticle (SpFN) immunogens elicit a set of new antigen receptor antibody (IgNAR) molecules that target two non-overlapping conserved epitopes on the spike RBD. Representative shark antibody variable NAR-Fc chimeras (ShAbs) targeting either of the two epitopes mediate cell-effector functions, with high affinity to all SARS-CoV-2 viral variants of concern, including the divergent Omicron strains. The ShAbs potently cross-neutralize SARS-CoV-2 WA-1, Alpha, Beta, Delta, Omicron BA.1 and BA.5, and SARS-CoV-1 pseudoviruses, and confer protection against SARS-CoV-2 challenge in the K18-hACE2 transgenic mouse model. Structural definition of the RBD-ShAb01-ShAb02 complex enabled design and production of multi-specific nanobodies with enhanced neutralization capacity, and picomolar affinity to divergent sarbecovirus clade 1a, 1b and 2 RBD molecules. These shark nanobodies represent potent immunotherapeutics both for current use, and future sarbecovirus pandemic preparation.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Single-Domain Antibodies , Animals , Mice , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Epitopes , Ferritins/genetics , Immunoglobulin Fc Fragments , Mice, Transgenic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Sharks
8.
Sci Adv ; 8(47): eade4433, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36417525

ABSTRACT

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and waning immunity call for next-generation vaccine strategies. Here, we assessed the immunogenicity and protective efficacy of two SARS-CoV-2 vaccines targeting the WA1/2020 spike protein, Ad26.COV2.S (Ad26) and Spike ferritin Nanoparticle (SpFN), in nonhuman primates, delivered as either a homologous (SpFN/SpFN and Ad26/Ad26) or heterologous (Ad26/SpFN) prime-boost regimen. The Ad26/SpFN regimen elicited the highest CD4 T cell and memory B cell responses, the SpFN/SpFN regimen generated the highest binding and neutralizing antibody responses, and the Ad26/Ad26 regimen generated the most robust CD8 T cell responses. Despite these differences, protective efficacy against SARS-CoV-2 Omicron BA.1 challenge was similar for all three regimens. After challenge, all vaccinated monkeys showed significantly reduced peak and day 4 viral loads in both bronchoalveolar lavage and nasal swabs as compared with sham animals. The efficacy conferred by these three immunologically distinct vaccine regimens suggests that both humoral and cellular immunity contribute to protection against SARS-CoV-2 Omicron challenge.

9.
Nat Immunol ; 22(12): 1503-1514, 2021 12.
Article in English | MEDLINE | ID: mdl-34716452

ABSTRACT

Prevention of viral escape and increased coverage against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern require therapeutic monoclonal antibodies (mAbs) targeting multiple sites of vulnerability on the coronavirus spike glycoprotein. Here we identify several potent neutralizing antibodies directed against either the N-terminal domain (NTD) or the receptor-binding domain (RBD) of the spike protein. Administered in combinations, these mAbs provided low-dose protection against SARS-CoV-2 infection in the K18-human angiotensin-converting enzyme 2 mouse model, using both neutralization and Fc effector antibody functions. The RBD mAb WRAIR-2125, which targets residue F486 through a unique heavy-chain and light-chain pairing, demonstrated potent neutralizing activity against all major SARS-CoV-2 variants of concern. In combination with NTD and other RBD mAbs, WRAIR-2125 also prevented viral escape. These data demonstrate that NTD/RBD mAb combinations confer potent protection, likely leveraging complementary mechanisms of viral inactivation and clearance.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Binding Sites/genetics , COVID-19/metabolism , COVID-19/prevention & control , Disease Models, Animal , Dose-Response Relationship, Drug , Epitope Mapping , Epitopes/chemistry , Epitopes/immunology , Epitopes/metabolism , Humans , Mice, Transgenic , Neutralization Tests , Protein Binding , Protein Conformation , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Survival Analysis
10.
J Immunol Methods ; 461: 63-72, 2018 10.
Article in English | MEDLINE | ID: mdl-29894744

ABSTRACT

Cell lines stably transfected with genes responding to Type I interferons (IFN) are potentially a useful alternative to enzyme linked immuo-assays (ELISAs) or assays based on resistance of a test cell line to virus infection using cell death or infection endpoints. Increasingly available are a variety of commercial cell lines developed for reporter gene assays (RGAs) which are responsive to IFN exposure. These cells produce a soluble gene product which can be readily quantified using multiwell plate spectrophotometers or luminometers. We have investigated RAW-Blue ISG™ and B16-Blue IFNα/ß™ cells (InvivoGen) which produce secreted embryonic alkaline phosphatase (SEAP) as a RGA to measure Interferon alpha (IFNα) and beta (IFNß). These cells showed a log-linear response over 4 logs of IFN concentration between 10 and 100,000 Units/ml (U/ml). Concentration dependent responses could be observed as early as 6 h but greater sensitivity was obtained at 24 h. Neutralizing antibodies to IFNα and IFNß reduced the response to baseline. As proof of principle supernatants from RAW 264.7 (murine macrophage; parental cell line) infected with 1 multiplicity of infection (moi) of influenza A virus (X31/H3N2) were used as test samples. Pre-treatment of the supernatant with anti-IFNα failed to reduce the cell response but it was reduced to background by anti-IFNß. The high level of IFNß but very low level of IFNα was confirmed by ELISA. Availability, ease of use and maintenance, and possible cost savings make application of this reporter gene cell approach a valuable alternative to other methods for measuring Type I interferon.


Subject(s)
Biological Assay/methods , Genes, Reporter , Influenza A Virus, H3N2 Subtype/immunology , Interferon-alpha/immunology , Interferon-beta/immunology , Animals , Humans , Mice , RAW 264.7 Cells
11.
J Immunol ; 168(3): 1123-30, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11801646

ABSTRACT

Blockade of the CD40 and CD28 costimulatory pathways significantly prolongs allograft survival; however, certain strains of mice (i.e., C57BL/6) are relatively resistant to the effects of combined CD40/CD28 blockade. We have previously shown that the costimulation blockade-resistant phenotype can be attributed to a subset of CD8+ T cells and is independent of CD4+ T cell-mediated help. Here we explore the role of the IL-2 pathway in this process using mAbs against the high affinity IL-2R, CD25, and IL-2 in prolonging skin allograft survival in mice receiving combined CD40/CD28 blockade. We have also investigated the effects of treatment on effector function by assessment of cytotoxicity and the generation of IFN-gamma-producing cells in response to allogeneic stimulators as well as proliferation in an in vivo graft-vs-host disease model. We find that additional blockade of either CD25 or IL-2 significantly extends allograft survival beyond that in mice receiving costimulation blockade alone. This correlates with diminished frequencies of IFN-gamma-producing allospecific T cells and reduced CTL activity. Anti-CD25 therapy also synergizes with CD40/CD28 blockade in suppressing proliferative responses. Interestingly, depletion of CD4+ T cells, but not CD8+ cells, prevents prolongation in allograft survival, suggesting an IL-2-independent role for regulation in extended survival.


Subject(s)
Graft Rejection/immunology , Graft Rejection/prevention & control , Immunoconjugates , Interleukin-2/physiology , Lymphocyte Activation/immunology , Signal Transduction/immunology , Transplantation, Homologous/immunology , Abatacept , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/pharmacology , Antigens, CD , Antigens, Differentiation/administration & dosage , CD4-Positive T-Lymphocytes/immunology , CD40 Ligand/immunology , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen , Cytotoxicity Tests, Immunologic , Down-Regulation/immunology , Drug Synergism , Graft Survival/immunology , Graft vs Host Disease/immunology , Immune Sera/administration & dosage , Immunosuppressive Agents/pharmacology , Injections, Intraperitoneal , Interferon-gamma/antagonists & inhibitors , Interferon-gamma/biosynthesis , Interleukin-2/antagonists & inhibitors , Interleukin-2/immunology , Lymphocyte Culture Test, Mixed , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, Interleukin-2/immunology , Skin Transplantation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...