Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Sci Rep ; 13(1): 9666, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316521

ABSTRACT

Livestock mobility exacerbates infectious disease risks across sub-Saharan Africa, but enables critical access to grazing and water resources, and trade. Identifying locations of high livestock traffic offers opportunities for targeted control. We focus on Tanzanian agropastoral and pastoral communities that account respectively for over 75% and 15% of livestock husbandry in eastern Africa. We construct networks of livestock connectivity based on participatory mapping data on herd movements reported by village livestock keepers as well as data from trading points to understand how seasonal availability of resources, land-use and trade influence the movements of livestock. In communities that practise agropastoralism, inter- and intra-village connectivity through communal livestock resources (e.g. pasture and water) was 1.9 times higher in the dry compared to the wet season suggesting greater livestock traffic and increased contact probability. In contrast, livestock from pastoral communities were 1.6 times more connected at communal locations during the wet season when they also tended to move farther (by 3 km compared to the dry season). Trade-linked movements were twice more likely from rural to urban locations. Urban locations were central to all networks, particularly those with potentially high onward movements, for example to abattoirs, livestock holding grounds, or other markets, including beyond national boundaries. We demonstrate how livestock movement information can be used to devise strategic interventions that target critical livestock aggregation points (i.e. locations of high centrality values) and times (i.e. prior to and after the wet season in pastoral and agropastoral areas, respectively). Such targeted interventions are a cost-effective approach to limit infection without restricting livestock mobility critical to sustainable livelihoods.


Subject(s)
Abattoirs , Livestock , Animals , Africa, Eastern , Movement , Probability
2.
PLoS Comput Biol ; 19(3): e1010885, 2023 03.
Article in English | MEDLINE | ID: mdl-36972311

ABSTRACT

Surface antigens of pathogens are commonly targeted by vaccine-elicited antibodies but antigenic variability, notably in RNA viruses such as influenza, HIV and SARS-CoV-2, pose challenges for control by vaccination. For example, influenza A(H3N2) entered the human population in 1968 causing a pandemic and has since been monitored, along with other seasonal influenza viruses, for the emergence of antigenic drift variants through intensive global surveillance and laboratory characterisation. Statistical models of the relationship between genetic differences among viruses and their antigenic similarity provide useful information to inform vaccine development, though accurate identification of causative mutations is complicated by highly correlated genetic signals that arise due to the evolutionary process. Here, using a sparse hierarchical Bayesian analogue of an experimentally validated model for integrating genetic and antigenic data, we identify the genetic changes in influenza A(H3N2) virus that underpin antigenic drift. We show that incorporating protein structural data into variable selection helps resolve ambiguities arising due to correlated signals, with the proportion of variables representing haemagglutinin positions decisively included, or excluded, increased from 59.8% to 72.4%. The accuracy of variable selection judged by proximity to experimentally determined antigenic sites was improved simultaneously. Structure-guided variable selection thus improves confidence in the identification of genetic explanations of antigenic variation and we also show that prioritising the identification of causative mutations is not detrimental to the predictive capability of the analysis. Indeed, incorporating structural information into variable selection resulted in a model that could more accurately predict antigenic assay titres for phenotypically-uncharacterised virus from genetic sequence. Combined, these analyses have the potential to inform choices of reference viruses, the targeting of laboratory assays, and predictions of the evolutionary success of different genotypes, and can therefore be used to inform vaccine selection processes.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Humans , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype/genetics , Bayes Theorem , Hemagglutinin Glycoproteins, Influenza Virus/genetics , SARS-CoV-2 , Antigens, Viral/genetics , Genotype , Phenotype , Antibodies, Viral/genetics
3.
Nat Microbiol ; 7(12): 2054-2067, 2022 12.
Article in English | MEDLINE | ID: mdl-36411354

ABSTRACT

The Klebsiella group, found in humans, livestock, plants, soil, water and wild animals, is genetically and ecologically diverse. Many species are opportunistic pathogens and can harbour diverse classes of antimicrobial resistance genes. Healthcare-associated Klebsiella pneumoniae clones that are non-susceptible to carbapenems can spread rapidly, representing a high public health burden. Here we report an analysis of 3,482 genome sequences representing 15 Klebsiella species sampled over a 17-month period from a wide range of clinical, community, animal and environmental settings in and around the Italian city of Pavia. Northern Italy is a hotspot for hospital-acquired carbapenem non-susceptible Klebsiella and thus a pertinent setting to examine the overlap between isolates in clinical and non-clinical settings. We found no genotypic or phenotypic evidence for non-susceptibility to carbapenems outside the clinical environment. Although we noted occasional transmission between clinical and non-clinical settings, our data point to a limited role of animal and environmental reservoirs in the human acquisition of Klebsiella spp. We also provide a detailed genus-wide view of genomic diversity and population structure, including the identification of new groups.


Subject(s)
Genomics , Klebsiella , Animals , Humans , Klebsiella/genetics , Genotype , Carbapenems/pharmacology , Italy/epidemiology
5.
SSM Popul Health ; 19: 101192, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36039349

ABSTRACT

Previous research has demonstrated increasing diversity in causes of mortality among high-income nations in recent decades, associated with improvements in health and increasing life expectancies. Health outcomes are known to vary widely between communities within these countries and inequalities between sexes and other subpopulations are key in understanding the health of populations. Despite this, little is known about variation in the diversity of mortality causes between these subpopulations. Diversification in mortality causes indicates an increase in the pool of potential causes of mortality an individual is likely to face. This poses challenges for the public health and medical sectors by increasing diagnostic uncertainty and broadening the range of causes to be addressed by public health and medical interventions. Here we examine trends over time in the diversity in causes of mortality in Scotland by sex and area-level deprivation, also examining deaths among those younger than 75 years and those 75 years and older separately. We find that diversity in causes of mortality has increased across subpopulations; that it has risen more quickly in men than women; that the rate of increase has been similar across age categories; and that there is no clear ranking in the trends by deprivation quintile, despite slower improvements in mortality rates among the most deprived. Increasing diversity in mortality causes suggests that a greater public health focus on reducing death rates from a broader range of causes is likely to be required, and this may be especially important for men who face a faster rate of diversification.

6.
Epidemics ; 40: 100612, 2022 09.
Article in English | MEDLINE | ID: mdl-35930904

ABSTRACT

The use of data has been essential throughout the unfolding COVID-19 pandemic. We have needed it to populate our models, inform our understanding, and shape our responses to the disease. However, data has not always been easy to find and access, it has varied in quality and coverage, been difficult to reuse or repurpose. This paper reviews these and other challenges and recommends steps to develop a data ecosystem better able to deal with future pandemics by better supporting preparedness, prevention, detection and response.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Ecosystem , Forecasting , Humans , Pandemics/prevention & control
7.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210299, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-35965467

ABSTRACT

We report on an ongoing collaboration between epidemiological modellers and visualization researchers by documenting and reflecting upon knowledge constructs-a series of ideas, approaches and methods taken from existing visualization research and practice-deployed and developed to support modelling of the COVID-19 pandemic. Structured independent commentary on these efforts is synthesized through iterative reflection to develop: evidence of the effectiveness and value of visualization in this context; open problems upon which the research communities may focus; guidance for future activity of this type and recommendations to safeguard the achievements and promote, advance, secure and prepare for future collaborations of this kind. In describing and comparing a series of related projects that were undertaken in unprecedented conditions, our hope is that this unique report, and its rich interactive supplementary materials, will guide the scientific community in embracing visualization in its observation, analysis and modelling of data as well as in disseminating findings. Equally we hope to encourage the visualization community to engage with impactful science in addressing its emerging data challenges. If we are successful, this showcase of activity may stimulate mutually beneficial engagement between communities with complementary expertise to address problems of significance in epidemiology and beyond. See https://ramp-vis.github.io/RAMPVIS-PhilTransA-Supplement/. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Subject(s)
COVID-19 , Pandemics , COVID-19/epidemiology , Humans
8.
Philos Trans A Math Phys Eng Sci ; 380(2233): 20210300, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-35965468

ABSTRACT

Modern epidemiological analyses to understand and combat the spread of disease depend critically on access to, and use of, data. Rapidly evolving data, such as data streams changing during a disease outbreak, are particularly challenging. Data management is further complicated by data being imprecisely identified when used. Public trust in policy decisions resulting from such analyses is easily damaged and is often low, with cynicism arising where claims of 'following the science' are made without accompanying evidence. Tracing the provenance of such decisions back through open software to primary data would clarify this evidence, enhancing the transparency of the decision-making process. Here, we demonstrate a Findable, Accessible, Interoperable and Reusable (FAIR) data pipeline. Although developed during the COVID-19 pandemic, it allows easy annotation of any data as they are consumed by analyses, or conversely traces the provenance of scientific outputs back through the analytical or modelling source code to primary data. Such a tool provides a mechanism for the public, and fellow scientists, to better assess scientific evidence by inspecting its provenance, while allowing scientists to support policymakers in openly justifying their decisions. We believe that such tools should be promoted for use across all areas of policy-facing research. This article is part of the theme issue 'Technical challenges of modelling real-life epidemics and examples of overcoming these'.


Subject(s)
COVID-19 , Data Management , Humans , Pandemics , Software , Workflow
9.
Epidemics ; 39: 100574, 2022 06.
Article in English | MEDLINE | ID: mdl-35617882

ABSTRACT

Uncertainty quantification is a formal paradigm of statistical estimation that aims to account for all uncertainties inherent in the modelling process of real-world complex systems. The methods are directly applicable to stochastic models in epidemiology, however they have thus far not been widely used in this context. In this paper, we provide a tutorial on uncertainty quantification of stochastic epidemic models, aiming to facilitate the use of the uncertainty quantification paradigm for practitioners with other complex stochastic simulators of applied systems. We provide a formal workflow including the important decisions and considerations that need to be taken, and illustrate the methods over a simple stochastic epidemic model of UK SARS-CoV-2 transmission and patient outcome. We also present new approaches to visualisation of outputs from sensitivity analyses and uncertainty quantification more generally in high input and/or output dimensions.


Subject(s)
COVID-19 , Epidemics , COVID-19/epidemiology , Calibration , Humans , SARS-CoV-2 , Uncertainty
10.
Sci Rep ; 11(1): 16375, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34385539

ABSTRACT

In Africa, livestock are important to local and national economies, but their productivity is constrained by infectious diseases. Comprehensive information on livestock movements and contacts is required to devise appropriate disease control strategies; yet, understanding contact risk in systems where herds mix extensively, and where different pathogens can be transmitted at different spatial and temporal scales, remains a major challenge. We deployed Global Positioning System collars on cattle in 52 herds in a traditional agropastoral system in western Serengeti, Tanzania, to understand fine-scale movements and between-herd contacts, and to identify locations of greatest interaction between herds. We examined contact across spatiotemporal scales relevant to different disease transmission scenarios. Daily cattle movements increased with herd size and rainfall. Generally, contact between herds was greatest away from households, during periods with low rainfall and in locations close to dipping points. We demonstrate how movements and contacts affect the risk of disease spread. For example, transmission risk is relatively sensitive to the survival time of different pathogens in the environment, and less sensitive to transmission distance, at least over the range of the spatiotemporal definitions of contacts that we explored. We identify times and locations of greatest disease transmission potential and that could be targeted through tailored control strategies.


Subject(s)
Livestock/physiology , Movement/physiology , Animal Husbandry/methods , Animals , Cattle , Geographic Information Systems , Tanzania
11.
Nat Rev Microbiol ; 19(7): 409-424, 2021 07.
Article in English | MEDLINE | ID: mdl-34075212

ABSTRACT

Although most mutations in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome are expected to be either deleterious and swiftly purged or relatively neutral, a small proportion will affect functional properties and may alter infectivity, disease severity or interactions with host immunity. The emergence of SARS-CoV-2 in late 2019 was followed by a period of relative evolutionary stasis lasting about 11 months. Since late 2020, however, SARS-CoV-2 evolution has been characterized by the emergence of sets of mutations, in the context of 'variants of concern', that impact virus characteristics, including transmissibility and antigenicity, probably in response to the changing immune profile of the human population. There is emerging evidence of reduced neutralization of some SARS-CoV-2 variants by postvaccination serum; however, a greater understanding of correlates of protection is required to evaluate how this may impact vaccine effectiveness. Nonetheless, manufacturers are preparing platforms for a possible update of vaccine sequences, and it is crucial that surveillance of genetic and antigenic changes in the global virus population is done alongside experiments to elucidate the phenotypic impacts of mutations. In this Review, we summarize the literature on mutations of the SARS-CoV-2 spike protein, the primary antigen, focusing on their impacts on antigenicity and contextualizing them in the protein structure, and discuss them in the context of observed mutation frequencies in global sequence datasets.


Subject(s)
COVID-19/virology , Immune Evasion , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/classification , Amino Acids/chemistry , Amino Acids/genetics , Antigenic Variation/genetics , Antigenic Variation/physiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Vaccines/immunology , COVID-19 Vaccines/standards , Epitopes/chemistry , Epitopes/genetics , Epitopes/immunology , Humans , Immune Evasion/genetics , Mutation , Protein Conformation , SARS-CoV-2/classification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
12.
J Virol ; 95(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33268517

ABSTRACT

Receptor recognition and binding is the first step of viral infection and a key determinant of host specificity. The inability of avian influenza viruses to effectively bind human-like sialylated receptors is a major impediment to their efficient transmission in humans and pandemic capacity. Influenza H9N2 viruses are endemic in poultry across Asia and parts of Africa where they occasionally infect humans and are therefore considered viruses with zoonotic potential. We previously described H9N2 viruses, including several isolated from human zoonotic cases, showing a preference for human-like receptors. Here we take a mutagenesis approach, making viruses with single or multiple substitutions in H9 haemagglutinin and test binding to avian and human receptor analogues using biolayer interferometry. We determine the genetic basis of preferences for alternative avian receptors and for human-like receptors, describing amino acid motifs at positions 190, 226 and 227 that play a major role in determining receptor specificity, and several other residues such as 159, 188, 193, 196, 198 and 225 that play a smaller role. Furthermore, we show changes at residues 135, 137, 147, 157, 158, 184, 188, and 192 can also modulate virus receptor avidity and that substitutions that increased or decreased the net positive charge around the haemagglutinin receptor-binding site show increases and decreases in avidity, respectively. The motifs we identify as increasing preference for the human-receptor will help guide future H9N2 surveillance efforts and facilitate our understanding of the emergence of influenza viruses with increased zoonotic potential.IMPORTANCE As of 2020, over 60 infections of humans by H9N2 influenza viruses have been recorded in countries where the virus is endemic. Avian-like cellular receptors are the primary target for these viruses. However, given that human infections have been detected on an almost monthly basis since 2015, there may be a capacity for H9N2 viruses to evolve and gain the ability to target human-like cellular receptors. Here we identify molecular signatures that can cause viruses to bind human-like receptors, and we identify the molecular basis for the distinctive preference for sulphated receptors displayed by the majority of recent H9N2 viruses. This work will help guide future surveillance by providing markers that signify the emergence of viruses with enhanced zoonotic potential as well as improving understanding of the basis of influenza virus receptor-binding.

13.
J Evol Biol ; 34(6): 893-909, 2021 06.
Article in English | MEDLINE | ID: mdl-33185292

ABSTRACT

During evolution, genomes are shaped by a plethora of forces that can leave characteristic signatures. A common goal when studying diverging populations is to detect the signatures of selective sweeps, which can be rather difficult in complex demographic scenarios, such as under secondary contact. Moreover, the detection of selective sweeps, especially in whole-genome data, often relies heavily on a narrow set of summary statistics that are affected by a multitude of factors, frequently leading to false positives and false negatives. Simulating genomic regions makes it possible to control these demographic and population genetic factors. We used simulations of large genomic regions to determine how different secondary contact and sympatric speciation scenarios affect the footprint of hard and soft selective sweeps in the presence of varying degrees of gene flow and recombination. We explored the ability of an array of population genetic summary statistics to detect the footprints of these selective sweeps under specific demographies. We focussed on metrics that do not require phased data or ancestral sequences and therefore have wide applicability. We found that a newly developed beta diversity measure, B¯GD utperformed all other metrics in detecting selective sweeps and that FST also performed well. High accuracy was also found in Δπ and genotype distance-derived metrics. The performance of most metrics strongly depended on factors such as the presence of an allopatric phase, migration rates, recombination, population growth, and whether the sweep was hard or soft. We provide suggestions for locating and analysing the response to selective sweeps in whole-genome data.


Subject(s)
Genetic Speciation , Genetics, Population/methods , Genomics/methods , Models, Genetic , Selection, Genetic , Statistics as Topic
14.
Proc Natl Acad Sci U S A ; 117(50): 31954-31962, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33229566

ABSTRACT

Canine distemper virus (CDV) has recently emerged as an extinction threat for the endangered Amur tiger (Panthera tigris altaica). CDV is vaccine-preventable, and control strategies could require vaccination of domestic dogs and/or wildlife populations. However, vaccination of endangered wildlife remains controversial, which has led to a focus on interventions in domestic dogs, often assumed to be the source of infection. Effective decision making requires an understanding of the true reservoir dynamics, which poses substantial challenges in remote areas with diverse host communities. We carried out serological, demographic, and phylogenetic studies of dog and wildlife populations in the Russian Far East to show that a number of wildlife species are more important than dogs, both in maintaining CDV and as sources of infection for tigers. Critically, therefore, because CDV circulates among multiple wildlife sources, dog vaccination alone would not be effective at protecting tigers. We show, however, that low-coverage vaccination of tigers themselves is feasible and would produce substantive reductions in extinction risks. Vaccination of endangered wildlife provides a valuable component of conservation strategies for endangered species.


Subject(s)
Distemper/prevention & control , Endangered Species/economics , Tigers/virology , Vaccination/economics , Viral Vaccines/administration & dosage , Animals , Animals, Wild/virology , Decision Making, Organizational , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Distemper/epidemiology , Distemper/transmission , Distemper/virology , Distemper Virus, Canine/genetics , Distemper Virus, Canine/immunology , Dogs/blood , Dogs/virology , Feasibility Studies , Female , Male , Models, Economic , Phylogeny , Seroepidemiologic Studies , Siberia , Tigers/blood , Vaccination/methods , Vaccination Coverage/economics , Vaccination Coverage/methods , Vaccination Coverage/organization & administration , Viral Vaccines/economics
15.
Front Vet Sci ; 7: 568, 2020.
Article in English | MEDLINE | ID: mdl-33102544

ABSTRACT

Foot-and-mouth disease (FMD) continues to be a major burden for livestock owners in endemic countries and a continuous threat to FMD-free countries. The epidemiology and control of FMD in Africa is complicated by the presence of five clinically indistinguishable serotypes. Of these the Southern African Territories (SAT) type 3 has received limited attention, likely due to its restricted distribution and it being less frequently detected. We investigated the intratypic genetic variation of the complete P1 capsid-coding region of 22 SAT3 viruses and confirmed the geographical distribution of five of the six SAT3 topotypes. The antigenic cross-reactivity of 12 SAT3 viruses against reference antisera was assessed by performing virus neutralization assays and calculating the r1-values, which is a ratio of the heterologous neutralizing titer to the homologous neutralizing titer. Interestingly, cross-reactivity between the SAT3 reference antisera and many SAT3 viruses was notably high (r1-values >0.3). Moreover, some of the SAT3 viruses reacted more strongly to the reference sera compared to the homologous virus (r1-values >1). An increase in the avidity of the reference antisera to the heterologous viruses could explain some of the higher neutralization titers observed. Subsequently, we used the antigenic variability data and corresponding genetic and structural data to predict naturally occurring amino acid positions that correlate with antigenic changes. We identified four unique residues within the VP1, VP2, and VP3 proteins, associated with a change in cross-reactivity, with two sites that change simultaneously. The analysis of antigenic variation in the context of sequence differences is critical for both surveillance-informed selection of effective vaccines and the rational design of vaccine antigens tailored for specific geographic localities, using reverse genetics.

16.
Front Vet Sci ; 7: 36, 2020.
Article in English | MEDLINE | ID: mdl-32118060

ABSTRACT

Game theory examines strategic decision-making in situations of conflict, cooperation, and coordination. It has become an established tool in economics, psychology and political science, and more recently has been applied to disease control. Used to examine vaccination uptake in human medicine, game theory shows that when vaccination is voluntary some individuals will choose to "free-ride" on the protection provided by others, resulting in insufficient coverage for control of a vaccine-preventable disease. Here, we use game theory to examine farmer uptake of a new diagnostic ELISA test for sheep scab-a highly infectious disease with an estimated cost exceeding £8M per year to the UK industry. The stochastic game models decisions made by neighboring farmers when deciding whether to adopt the newly available test, which can detect subclinical infestation. A key element of the stochastic game framework is that it allows multiple states. Depending on infestation status and test adoption decisions in the previous year, a farm may be at high, medium or low risk of infestation this year-a status which influences the decision the farmer makes and the farmer payoffs. Ultimately, each farmer's decision depends on the costs of using the diagnostic test vs. the benefits of enhanced disease control, which may only accrue in the longer term. The extent to which a farmer values short-term over long-term benefits reflects external factors such as inflation or individual characteristics such as patience. Our results show that when using realistic parameters and with a test cost around 50% more than the current clinical diagnosis, the test will be adopted in the high-risk state, but not in the low-risk state. For the medium risk state, test adoption will depend on whether the farmer takes a long-term or short-term view. We show that these outcomes are relatively robust to change in test costs and, moreover, that whilst the farmers adopting the test would not expect to see large gains in profitability, substantial reduction in sheep scab (and associated welfare implications) could be achieved in a cost-neutral way to the industry.

17.
Proc Natl Acad Sci U S A ; 116(52): 27142-27150, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31843887

ABSTRACT

The human respiratory tract hosts a diverse community of cocirculating viruses that are responsible for acute respiratory infections. This shared niche provides the opportunity for virus-virus interactions which have the potential to affect individual infection risks and in turn influence dynamics of infection at population scales. However, quantitative evidence for interactions has lacked suitable data and appropriate analytical tools. Here, we expose and quantify interactions among respiratory viruses using bespoke analyses of infection time series at the population scale and coinfections at the individual host scale. We analyzed diagnostic data from 44,230 cases of respiratory illness that were tested for 11 taxonomically broad groups of respiratory viruses over 9 y. Key to our analyses was accounting for alternative drivers of correlated infection frequency, such as age and seasonal dependencies in infection risk, allowing us to obtain strong support for the existence of negative interactions between influenza and noninfluenza viruses and positive interactions among noninfluenza viruses. In mathematical simulations that mimic 2-pathogen dynamics, we show that transient immune-mediated interference can cause a relatively ubiquitous common cold-like virus to diminish during peak activity of a seasonal virus, supporting the potential role of innate immunity in driving the asynchronous circulation of influenza A and rhinovirus. These findings have important implications for understanding the linked epidemiological dynamics of viral respiratory infections, an important step towards improved accuracy of disease forecasting models and evaluation of disease control interventions.

18.
PLoS Comput Biol ; 15(12): e1007492, 2019 12.
Article in English | MEDLINE | ID: mdl-31834896

ABSTRACT

It is well recognised that animal and plant pathogens form complex ecological communities of interacting organisms within their hosts, and there is growing interest in the health implications of such pathogen interactions. Although community ecology approaches have been used to identify pathogen interactions at the within-host scale, methodologies enabling robust identification of interactions from population-scale data such as that available from health authorities are lacking. To address this gap, we developed a statistical framework that jointly identifies interactions between multiple viruses from contemporaneous non-stationary infection time series. Our conceptual approach is derived from a Bayesian multivariate disease mapping framework. Importantly, our approach captures within- and between-year dependencies in infection risk while controlling for confounding factors such as seasonality, demographics and infection frequencies, allowing genuine pathogen interactions to be distinguished from simple correlations. We validated our framework using a broad range of synthetic data. We then applied it to diagnostic data available for five respiratory viruses co-circulating in a major urban population between 2005 and 2013: adenovirus, human coronavirus, human metapneumovirus, influenza B virus and respiratory syncytial virus. We found positive and negative covariances indicative of epidemiological interactions among specific virus pairs. This statistical framework enables a community ecology perspective to be applied to infectious disease epidemiology with important utility for public health planning and preparedness.


Subject(s)
Host-Pathogen Interactions , Models, Biological , Animals , Bayes Theorem , Computational Biology , Computer Simulation , Host Microbial Interactions , Humans , Multivariate Analysis , Public Health Informatics , Respiratory Tract Infections/epidemiology , Spatio-Temporal Analysis , Time Factors , Virus Diseases/epidemiology
19.
J R Stat Soc Ser C Appl Stat ; 68(4): 859-885, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31598013

ABSTRACT

Understanding how genetic changes allow emerging virus strains to escape the protection afforded by vaccination is vital for the maintenance of effective vaccines. We use structural and phylogenetic differences between pairs of virus strains to identify important antigenic sites on the surface of the influenza A(H1N1) virus through the prediction of haemagglutination inhibition (HI) titre: pairwise measures of the antigenic similarity of virus strains. We propose a sparse hierarchical Bayesian model that can deal with the pairwise structure and inherent experimental variability in the H1N1 data through the introduction of latent variables. The latent variables represent the underlying HI titre measurement of any given pair of virus strains and help to account for the fact that, for any HI titre measurement between the same pair of virus strains, the difference in the viral sequence remains the same. Through accurately representing the structure of the H1N1 data, the model can select virus sites which are antigenic, while its latent structure achieves the computational efficiency that is required to deal with large virus sequence data, as typically available for the influenza virus. In addition to the latent variable model, we also propose a new method, the block-integrated widely applicable information criterion biWAIC, for selecting between competing models. We show how this enables us to select the random effects effectively when used with the model proposed and we apply both methods to an A(H1N1) data set.

20.
Biol Conserv ; 236: 79-91, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31496538

ABSTRACT

Knowledge gaps in spatiotemporal changes in mangrove diversity and composition have obstructed mangrove conservation programs across the tropics, but particularly in the Sundarbans (10,017 km2), the world's largest remaining natural mangrove ecosystem. Using mangrove tree data collected from Earth's largest permanent sample plot network at four historical time points (1986, 1994, 1999 and 2014), this study establishes spatially explicit baseline biodiversity information for the Sundarbans. We determined the spatial and temporal differences in alpha, beta, and gamma diversity in three ecological zones (hypo-, meso-, and hypersaline) and also uncovered changes in the mangroves' overall geographic range and abundances therein. Spatially, the hyposaline mangrove communities were the most diverse and heterogeneous in species composition while the hypersaline communities were the least diverse and most homogeneous at all historical time points. Since 1986, we detect an increasing trend of compositional homogeneity (between-site similarity in species composition) and a significant spatial contraction of distinct and diverse areas over the entire ecosystem. Temporally, the western and southern hypersaline communities have undergone radical shifts in species composition due to population increase and range expansion of the native invasive species Ceriops decandra and local extinction or range contraction of specialists including the globally endangered Heritiera fomes. The surviving biodiversity hotspots are distributed outside the legislated protected area network. In addition to suggesting the immediate coverage of these hotspots under protected area management, our novel biodiversity insights and spatial maps can form the basis for spatial conservation planning, biodiversity monitoring and protection initiatives for the Sundarbans.

SELECTION OF CITATIONS
SEARCH DETAIL
...