Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34445140

ABSTRACT

Overproduction of inflammatory cytokines is a keystone event in COVID-19 pathogenesis; TNF and its receptors (TNFR1 and TNFR2) are critical pro-inflammatory molecules. ADAM17 releases the soluble (sol) forms of TNF, TNFR1, and TNFR2. This study evaluated TNF, TNFRs, and ADAM17 at the protein, transcriptional, and gene levels in COVID-19 patients with different levels of disease severity. In total, 102 patients were divided into mild, moderate, and severe condition groups. A group of healthy donors (HD; n = 25) was included. Our data showed that solTNFR1 and solTNFR2 were elevated among the COVID-19 patients (p < 0.0001), without increasing the transcriptional level. Only solTNFR1 was higher in the severe group as compared to the mildly ill (p < 0.01), and the level was higher in COVID-19 patients who died than those that survived (p < 0.0001). The solTNFR1 level had a discrete negative correlation with C-reactive protein (p = 0.006, Rho = -0.33). The solADAM17 level was higher in severe as compared to mild disease conditions (p < 0.01), as well as in COVID-19 patients who died as compared to those that survived (p < 0.001). Additionally, a potential association between polymorphism TNFRSF1A:rs767455 and a severe degree of disease was suggested. These data suggest that solTNFR1 and solADAM17 are increased in severe conditions. solTNFR1 should be considered a potential target in the development of new therapeutic options.


Subject(s)
ADAM17 Protein , COVID-19/immunology , Receptors, Tumor Necrosis Factor, Type I , Tumor Necrosis Factor-alpha , ADAM17 Protein/blood , ADAM17 Protein/immunology , Adult , Aged , Case-Control Studies , Cohort Studies , Female , Humans , Male , Middle Aged , Receptors, Tumor Necrosis Factor, Type I/blood , Severity of Illness Index , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/immunology
2.
Microbiologyopen ; 7(5): e00593, 2018 10.
Article in English | MEDLINE | ID: mdl-29536659

ABSTRACT

The absence of base excision repair (BER) proteins involved in processing ROS-promoted genetic insults activates a DNA damage scanning (DisA)-dependent checkpoint event in outgrowing Bacillus subtilis spores. Here, we report that genetic disabling of transcription-coupled repair (TCR) or nucleotide excision repair (NER) pathways severely affected outgrowth of ΔdisA spores, and much more so than the effects of these mutations on log phase growth. This defect delayed the first division of spore's nucleoid suggesting that unrepaired lesions affected transcription and/or replication during outgrowth. Accordingly, return to life of spores deficient in DisA/Mfd or DisA/UvrA was severely affected by a ROS-inducer or a replication blocking agent, hydrogen peroxide and 4-nitroquinoline-oxide, respectively. Mutation frequencies to rifampin resistance (Rifr ) revealed that DisA allowed faithful NER-dependent DNA repair but activated error-prone repair in TCR-deficient outgrowing spores. Sequencing analysis of rpoB from spontaneous Rifr colonies revealed that mutations resulting from base deamination predominated in outgrowing wild-type spores. Interestingly, a wide range of base substitutions promoted by oxidized DNA bases were detected in ΔdisA and Δmfd outgrown spores. Overall, our results suggest that Mfd and DisA coordinate excision repair events in spore outgrowth to eliminate DNA lesions that interfere with replication and transcription during this developmental period.


Subject(s)
Bacillus subtilis/growth & development , Bacillus subtilis/genetics , DNA Damage , DNA Repair , Spores/growth & development , Spores/genetics , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Bacterial Proteins/metabolism , DNA Replication , DNA-Directed RNA Polymerases/genetics , Drug Resistance, Bacterial , Mutation , Reactive Oxygen Species/toxicity , Rifampin/pharmacology , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...