Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
ACS Nano ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39017620

ABSTRACT

Better techniques for imaging ferroelectric polarization would aid the development of new ferroelectrics and the refinement of old ones. Here we show how scanning transmission electron microscope (STEM) electron beam-induced current (EBIC) imaging reveals ferroelectric polarization with obvious, simply interpretable contrast. Planar imaging of an entire ferroelectric hafnium zirconium oxide (Hf0.5Zr0.5O2, HZO) capacitor shows an EBIC response that is linearly related to the polarization determined in situ with the positive-up, negative-down (PUND) method. The contrast is easily calibrated in MV/cm. The underlying mechanism is magnification-independent, operating equally well on micrometer-sized devices and individual nanoscale domains. Coercive-field mapping reveals that individual domains are biased "positive" and "negative", as opposed to being "easy" and "hard" to switch. The remanent background E-fields generating this bias can be isolated and mapped. Coupled with STEM's native capabilities for structural identification, STEM EBIC imaging provides a revolutionary tool for characterizing ferroelectric materials and devices.

2.
Front Cell Dev Biol ; 10: 853451, 2022.
Article in English | MEDLINE | ID: mdl-35721503

ABSTRACT

Arteriosclerosis is an important age-dependent disease that encompasses atherosclerosis, in-stent restenosis (ISR), pulmonary hypertension, autologous bypass grafting and transplant arteriosclerosis. Endothelial dysfunction and the proliferation of vascular smooth muscle cell (vSMC)-like cells is a critical event in the pathology of arteriosclerotic disease leading to intimal-medial thickening (IMT), lipid retention and vessel remodelling. An important aspect in guiding clinical decision-making is the detection of biomarkers of subclinical arteriosclerosis and early cardiovascular risk. Crucially, relevant biomarkers need to be good indicators of injury which change in their circulating concentrations or structure, signalling functional disturbances. Extracellular vesicles (EVs) are nanosized membraneous vesicles secreted by cells that contain numerous bioactive molecules and act as a means of intercellular communication between different cell populations to maintain tissue homeostasis, gene regulation in recipient cells and the adaptive response to stress. This review will focus on the emerging field of EV research in cardiovascular disease (CVD) and discuss how key EV signatures in liquid biopsies may act as early pathological indicators of adaptive lesion formation and arteriosclerotic disease progression. EV profiling has the potential to provide important clinical information to complement current cardiovascular diagnostic platforms that indicate or predict myocardial injury. Finally, the development of fitting devices to enable rapid and/or high-throughput exosomal analysis that require adapted processing procedures will be evaluated.

3.
HardwareX ; 11: e00259, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35509901

ABSTRACT

Centrifugal microfluidic devices offer a robust method for low-volume fluid handling by combining low-cost instrumentation with highly integrated automation. Crucial to the efficacy of Lab-on-a-Disc (LoaD) device operation is the selection of robust valving technology, the design of on-disc fluidic structures, and accurate control of disc spin-speeds (centrifugal force) during operation. The design and refinement of fluidic and valving structures is often guided by inspecting disc operation using high-speed camera systems. This approach involves synchronising image acquisition with disc rotation to visualise liquid flow through a series of images often presented in a video format. Depending on the decisions taken, such systems can cost from €4,000 upwards. This paper outlines the development of a low-cost centrifugal test-stand with an integrated imaging system using a generic wireless camera to record videos directly to a smartphone device. This imaging system can be fabricated using only 3D printers and a low-cost CNC milling machine from widely available materials for approximately €350. High-fidelity imaging of the entire disc for flow visualisation and the recording of real-time colour intensity measurements are facilitated by this standalone device. A vibration analysis study has been performed to determine the rotational velocity range at which the system can be safely operated. Furthermore, the efficacy of the imaging system has been demonstrated by performing real-time colour intensity measurements of dyed water dilutions.

4.
Adv Clin Chem ; 104: 1-70, 2021.
Article in English | MEDLINE | ID: mdl-34462053

ABSTRACT

Point-of-care testing (POCT) is a specific format of diagnostic testing that is conducted without accompanying infrastructure or sophisticated instrumentation. Traditionally, such rapid sample-to-answer assays provide inferior analytical performances to their laboratory counterparts when measuring cardiac biomarkers. Hence, their potentially broad applicability is somewhat bound by their inability to detect clinically relevant concentrations of cardiac troponin (cTn) in the early stages of myocardial injury. However, the continuous refinement of biorecognition elements, the optimization of detection techniques, and the fabrication of tailored fluid handling systems to manage the sensing process has stimulated the production of commercial assays that can support accelerated diagnostic pathways. This review will present the latest commercial POC assays and examine their impact on clinical decision-making. The individual elements that constitute POC assays will be explored, with an emphasis on aspects that contribute to economically feasible and highly sensitive assays. Furthermore, the prospect of POCT imparting a greater influence on early interventions for medium to high-risk individuals and the potential to re-shape the paradigm of cardiovascular risk assessments will be discussed.


Subject(s)
Biosensing Techniques , Cardiovascular Diseases/diagnosis , Microfluidic Analytical Techniques , Point-of-Care Testing , Biomarkers/analysis , Humans
5.
Sensors (Basel) ; 19(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31395843

ABSTRACT

Molecular imprinting is a rapidly growing area of interest involving the synthesis of artificial recognition elements that enable the separation of analyte from a sample matrix and its determination. Traditionally, this approach can be successfully applied to small analyte (<1.5 kDa) separation/ extraction, but, more recently it is finding utility in biomimetic sensors. These sensors consist of a recognition element and a transducer similar to their biosensor counterparts, however, the fundamental distinction is that biomimetic sensors employ an artificial recognition element. Molecularly imprinted polymers (MIPs) employed as the recognition elements in biomimetic sensors contain binding sites complementary in shape and functionality to their target analyte. Despite the growing interest in molecularly imprinting techniques, the commercial adoption of this technology is yet to be widely realised for blood sample analysis. This review aims to assess the applicability of this technology for the point-of-care testing (POCT) of cardiovascular disease-related biomarkers. More specifically, molecular imprinting is critically evaluated with respect to the detection of cardiac biomarkers indicative of acute coronary syndrome (ACS), such as the cardiac troponins (cTns). The challenges associated with the synthesis of MIPs for protein detection are outlined, in addition to enhancement techniques that ultimately improve the analytical performance of biomimetic sensors. The mechanism of detection employed to convert the analyte concentration into a measurable signal in biomimetic sensors will be discussed. Furthermore, the analytical performance of these sensors will be compared with biosensors and their potential implementation within clinical settings will be considered. In addition, the most suitable application of these sensors for cardiovascular assessment will be presented.


Subject(s)
Biosensing Techniques/methods , Cardiovascular Diseases/diagnosis , Molecular Imprinting , Point-of-Care Testing , Polymers/chemistry , Biomarkers/analysis , Biomimetics , Humans , Nanoparticles/chemistry , Troponin/analysis
6.
Biosensors (Basel) ; 8(4)2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30469415

ABSTRACT

Cardiac biomarkers are frequently measured to provide guidance on the well-being of a patient in relation to cardiac health with many assays having been developed and widely utilised in clinical assessment. Effectively treating and managing cardiovascular disease (CVD) relies on swiftly responding to signs of cardiac symptoms, thus providing a basis for enhanced patient management and an overall better health outcome. Ultra-sensitive cardiac biomarker detection techniques play a pivotal role in improving the diagnostic capacity of an assay and thus enabling a better-informed decision. However, currently, the typical approach taken within healthcare depends on centralised laboratories performing analysis of cardiac biomarkers, thus restricting the roll-out of rapid diagnostics. Point-of-care testing (POCT) involves conducting the diagnostic test in the presence of the patient, with a short turnaround time, requiring small sample volumes without compromising the sensitivity of the assay. This technology is ideal for combatting CVD, thus the formulation of ultra-sensitive assays and the design of biosensors will be critically evaluated, focusing on the feasibility of these techniques for point-of-care (POC) integration. Moreover, there are several key factors, which in combination, contribute to the development of ultra-sensitive techniques, namely the incorporation of nanomaterials for sensitivity enhancement and manipulation of labelling methods. This review will explore the latest developments in cardiac biomarker detection, primarily focusing on the detection of cardiac troponin I (cTnI). Highly sensitive detection of cTnI is of paramount importance regarding the rapid rule-in/rule-out of acute myocardial infarction (AMI). Thus the challenges encountered during cTnI measurements are outlined in detail to assist in demonstrating the drawbacks of current commercial assays and the obstructions to standardisation. Furthermore, the added benefits of introducing multi-biomarker panels are reviewed, several key biomarkers are evaluated and the analytical benefits provided by multimarkers-based methods are highlighted.


Subject(s)
Biomarkers/metabolism , Troponin I/metabolism , Humans , Point-of-Care Systems
7.
J Am Chem Soc ; 140(40): 12775-12784, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30189142

ABSTRACT

We apply a series of transient measurements to operational perovskite solar cells of the architecture ITO/PTAA/FA0.83Cs0.17Pb(I0.83Br0.17)3/C60/BCP/Ag, and similar cells with FA0.83MA0.17. The cells show no detectable JV hysteresis. Using photocurrent transients at applied bias we find a ∼1 ms time scale for the electric field screening by mobile ions in these cells. We confirm our interpretation of the transient measurements using a drift-diffusion model. Using Coulometry during field screening relaxation at short circuit, we determine the mobile ion concentration to be ∼1 × 1018/cm3. Using a model with one mobile ion species, the concentration and the screening time require an ion mobility of ∼3 × 10-7 cm2/(V s). As far as we know, this article gives the first direct measurement of the ion mobility and concentration in a fully functional perovskite solar cell. The measured ion mobility is 2 orders of magnitude higher than the highest estimates previously determined using perovskite solar cells and perovskite thin films, and 3 orders of magnitude higher than is frequently used in modeling hysteresis effects. We provide evidence that the fast field screening is due to mobile ions, as opposed to dark injection and trapping of electronic carriers.

8.
J Biophotonics ; 11(10): e201800026, 2018 10.
Article in English | MEDLINE | ID: mdl-29575820

ABSTRACT

Nacre is a complex biomaterial made of aragonite-tablet bricks and organic mortar that is considerably resilient against breakage. Nacre has been studied with a wide range of laboratory techniques, leading to understanding key fundamentals and informing the creation of bio-inspired materials. In this article, we present an optical polarimetric technique to investigate nacre, taking advantage of the translucence and birefringence of its microcomponents. We focus our study on 3 classes of mollusks that have nacreous shells: bivalve (Pinctada fucata), gastropod (Haliotis asinina and Haliotis rufescens) and cephalopod (Nautilus pompilius). We sent polarized light from a laser through thin samples of nacre and did imaging polarimetry of the transmitted light. We observed clear distinctions between the structures of bivalve and gastropod, due to the spatial variation of their birefringence. The patterns for cephalopod were more similar to bivalve than gastropod. Bleaching of the samples disrupted the transmitted light. Subsequent refilling of the bivalve and gastropod nacre samples with oil produced optical patterns similar to those of unbleached samples. In cephalopod samples, we found that bleaching produced irreversible changes in the optical pattern.


Subject(s)
Nacre/metabolism , Scanning Laser Polarimetry , Animals , Cephalopoda/metabolism , Gastropoda/metabolism , Pinctada/metabolism
9.
Nat Commun ; 7: 13831, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28004653

ABSTRACT

Ion migration has been proposed as a possible cause of photovoltaic current-voltage hysteresis in hybrid perovskite solar cells. A major objection to this hypothesis is that hysteresis can be reduced by changing the interfacial contact materials; however, this is unlikely to significantly influence the behaviour of mobile ionic charge within the perovskite phase. Here, we show that the primary effects of ion migration can be observed regardless of whether the contacts were changed to give devices with or without significant hysteresis. Transient optoelectronic measurements combined with device simulations indicate that electric-field screening, consistent with ion migration, is similar in both high and low hysteresis CH3NH3PbI3 cells. Simulation of the photovoltage and photocurrent transients shows that hysteresis requires the combination of both mobile ionic charge and recombination near the perovskite-contact interfaces. Passivating contact recombination results in higher photogenerated charge concentrations at forward bias which screen the ionic charge, reducing hysteresis.

10.
J Am Chem Soc ; 138(40): 13197-13206, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27610830

ABSTRACT

Charge recombination between oxidized dyes attached to mesoporous TiO2 and electrons in the TiO2 was studied in inert electrolytes using transient absorption spectroscopy. Simultaneously, hole transport within the dye monolayers was monitored by transient absorption anisotropy. The rate of recombination decreased when hole transport was inhibited selectively, either by decreasing the dye surface coverage or by changing the electrolyte environment. From Monte Carlo simulations of electron and hole diffusion in a particle, modeled as a cubic structure, we identify the conditions under which hole lifetime depends on the hole diffusion coefficient for the case of normal (disorder free) diffusion. From simulations of transient absorption and transient absorption anisotropy, we find that the rate and the dispersive character of hole transport in the dye monolayer observed spectroscopically can be explained by incomplete coverage and disorder in the monolayer. We show that dispersive transport in the dye monolayer combined with inhomogeneity in the TiO2 surface reactivity can contribute to the observed stretched electron-hole recombination dynamics and electron density dependence of hole lifetimes. Our experimental and computational analysis of lateral processes at interfaces can be applied to investigate and optimize charge transport and recombination in solar energy conversion devices using electrodes functionalized with molecular light absorbers and catalysts.

12.
Nat Commun ; 6: 7497, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26105623

ABSTRACT

Solar cells based on organic-inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current-voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH3PbI3) are derived from first principles, and are compared with kinetic data extracted from the current-voltage response of a perovskite-based solar cell. We identify the microscopic transport mechanisms, and find facile vacancy-assisted migration of iodide ions with an activation energy of 0.6 eV, in good agreement with the kinetic measurements. The results of this combined computational and experimental study suggest that hybrid halide perovskites are mixed ionic-electronic conductors, a finding that has major implications for solar cell device architectures.

13.
Nat Commun ; 6: 7124, 2015 May 29.
Article in English | MEDLINE | ID: mdl-26023041

ABSTRACT

Methylammonium lead iodide perovskite can make high-efficiency solar cells, which also show an unexplained photocurrent hysteresis dependent on the device-poling history. Here we report quasielastic neutron scattering measurements showing that dipolar CH3NH3(+) ions reorientate between the faces, corners or edges of the pseudo-cubic lattice cages in CH3NH3PbI3 crystals with a room temperature residence time of ∼14 ps. Free rotation, π-flips and ionic diffusion are ruled out within a 1-200-ps time window. Monte Carlo simulations of interacting CH3NH3(+) dipoles realigning within a 3D lattice suggest that the scattering measurements may be explained by the stabilization of CH3NH3(+) in either antiferroelectric or ferroelectric domains. Collective realignment of CH3NH3(+) to screen a device's built-in potential could reduce photovoltaic performance. However, we estimate the timescale for a domain wall to traverse a typical device to be ∼0.1-1 ms, faster than most observed hysteresis.

14.
J Am Chem Soc ; 137(15): 5087-99, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25785843

ABSTRACT

Methylammonium lead iodide (MAPI) cells of the design FTO/sTiO2/mpTiO2/MAPI/Spiro-OMeTAD/Au, where FTO is fluorine-doped tin oxide, sTiO2 indicates solid-TiO2, and mpTiO2 is mesoporous TiO2, are studied using transient photovoltage (TPV), differential capacitance, charge extraction, current interrupt, and chronophotoamperometry. We show that in mpTiO2/MAPI cells there are two kinds of extractable charge stored under operation: a capacitive electronic charge (∼0.2 µC/cm(2)) and another, larger charge (40 µC/cm(2)), possibly related to mobile ions. Transient photovoltage decays are strongly double exponential with two time constants that differ by a factor of ∼5, independent of bias light intensity. The fast decay (∼1 µs at 1 sun) is assigned to the predominant charge recombination pathway in the cell. We examine and reject the possibility that the fast decay is due to ferroelectric relaxation or to the bulk photovoltaic effect. Like many MAPI solar cells, the studied cells show significant J-V hysteresis. Capacitance vs open circuit voltage (V(oc)) data indicate that the hysteresis involves a change in internal potential gradients, likely a shift in band offset at the TiO2/MAPI interface. The TPV results show that the V(oc) hysteresis is not due to a change in recombination rate constant. Calculation of recombination flux at V(oc) suggests that the hysteresis is also not due to an increase in charge separation efficiency and that charge generation is not a function of applied bias. We also show that the J-V hysteresis is not a light driven effect but is caused by exposure to electrical bias, light or dark.

15.
Adv Mater ; 26(36): 6268-73, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25091315

ABSTRACT

Three organic or hybrid photovoltaic technologies are compared with respect to performance and stability under the harsh regime of concentrated light. Although all three technologies show surprisingly high (and linear) photocurrents, and better than expected stability, no golden apples are awarded.

16.
J Am Chem Soc ; 136(20): 7286-94, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24784482

ABSTRACT

We propose a new mechanism by which the common electrolyte additive guanidinium thiocyanate (GdmSCN) improves efficiency in dye-sensitized solar cells (DSSCs). We demonstrate that binding of Gdm(+) to TiO2 is weak and does not passivate recombination sites on the TiO2 surface as has been previously claimed. Instead, we show that Gdm(+) binds strongly to the N719 and D131 dyes and probably to many similar compounds. The binding of Gdm(+) competes with iodine binding to the same molecule, reducing the surface concentration of dye-I2 complexes. This in turn reduces the electron/iodine recombination rate constant, which increases the collection efficiency and thus the photocurrent. We further observe that GdmNO3 can increase efficiency more than the current Gdm(+) source, GdmSCN, at least in some DSSCs. Overall, the results point to an improved paradigm for DSSC operation and development. The TiO2/electrolyte surface has long been held to be the key interface in DSSCs. We now assert that the dye layer/electrolyte interaction is at least, and probably more, important.

17.
Paediatr Drugs ; 16(3): 189-98, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24723200

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory disorder of the gastrointestinal tract of unknown etiology that frequently presents in the pediatric population. The evaluation of pediatric UC involves excluding infection, and a colonoscopy that documents the clinical and histologic features of chronic colitis. Initial management of mild UC is typically with mesalamine therapy for induction and maintenance. Moderate UC is often initially treated with oral prednisone. Depending on disease severity and response to prednisone, maintenance options include mesalamine, mercaptopurine, azathioprine, infliximab, or adalimumab. Severe UC is typically treated with intravenous corticosteroids. Corticosteroid nonresponders should either undergo a colectomy or be treated with second-line medical rescue therapy (infliximab or calcineurin inhibitors). The severe UC patients who respond to medical rescue therapy can be maintained on infliximab or thiopurine, but 1-year remission rates for such patients are under 50 %. These medications are discussed in detail along with the initial work-up and a treatment algorithm.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Colitis, Ulcerative/drug therapy , Adrenal Cortex Hormones/therapeutic use , Child , Colitis, Ulcerative/diagnosis , Humans
18.
Adv Mater ; 25(13): 1881-922, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23404656

ABSTRACT

Tools that assess the limitations of dye sensitized solar cells (DSSCs) made with new materials are critical for progress. Measuring the transient electrical signals (voltage or current) after optically perturbing a DSSC is an approach which can give information about electron concentration, transport and recombination. Here we describe the theory and practice of this class of optoelectronic measurements, illustrated with numerous examples. The measurements are interpreted with the multiple trapping continuum model which describes electrons in a semiconductor with an exponential distribution of trapping states. We review standard small perturbation photocurrent and photovoltage transients, and introduce the photovoltage time of flight measurement which allows the simultaneous derivation of both effective diffusion and recombination coefficients. We then consider the utility of large perturbation measurements such as charge extraction and the current interrupt technique for finding the internal charge and voltage within a device. Combining these measurements allows differences between DSSCs to be understood in terms such as electron collection efficiency, semiconductor conduction band edge shifts and recombination kinetics.

19.
Adv Mater ; 25(10): 1504-9, 2013 Mar 13.
Article in English | MEDLINE | ID: mdl-23280854

ABSTRACT

The wide bandgap and highly transparent inorganic compound copper(I) thiocyanate (CuSCN) is used for the first time to fabricate p-type thin-film transistors processed from solution at room temperature. By combining CuSCN with the high-k relaxor ferroelectric polymeric dielectric P(VDF-TrFE-CFE), we demonstrate low-voltage transistors with hole mobilities on the order of 0.1 cm(2) V(-1) s(-1) . By integrating two CuSCN transistors, unipolar logic NOT gates are also demonstrated.


Subject(s)
Thiocyanates/chemistry , Transistors, Electronic , Copper , Temperature
20.
Annu Rev Med ; 64: 485-96, 2013.
Article in English | MEDLINE | ID: mdl-23190148

ABSTRACT

Measurement is the basis for assessing potential improvements in healthcare quality. Measures may be classified into four categories: volume, structure, outcome, and process (VSOP). Measures of each type should be used with a full understanding of their cost and benefit. Although volume and structure measures are easily collected, impact on healthcare results is not always clear. Process measures are generally more difficult and expensive to collect, and the relationship between process and outcomes is only recently being explored. Knowledge of measure types and relationships among them, as well as emerging evidence on the role of patient satisfaction, must be used to guide improvements and ultimately for demonstrating value in healthcare.


Subject(s)
Delivery of Health Care/standards , Patient Satisfaction , Quality of Health Care/organization & administration , Humans
SELECTION OF CITATIONS
SEARCH DETAIL