Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
2.
Sci Adv ; 9(46): eadf8764, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37976357

ABSTRACT

Leukotrienes, a class of inflammatory bioactive lipids, are well studied in the periphery, but less is known of their importance in the brain. We identified that the enzyme leukotriene A4 hydrolase (LTA4H) is expressed in healthy mouse neurons, and inhibition of LTA4H in aged mice improves hippocampal dependent memory. Single-cell nuclear RNA sequencing of hippocampal neurons after inhibition reveals major changes to genes important for synaptic organization, structure, and activity. We propose that LTA4H inhibition may act to improve cognition by directly inhibiting the enzymatic activity in neurons, leading to improved synaptic function. In addition, LTA4H plasma levels are increased in both aging and Alzheimer's disease and correlated with cognitive impairment. These results identify a role for LTA4H in the brain, and we propose that LTA4H inhibition may be a promising therapeutic strategy to treat cognitive decline in aging related diseases.


Subject(s)
Cognitive Dysfunction , Epoxide Hydrolases , Mice , Animals , Epoxide Hydrolases/chemistry , Cognitive Dysfunction/drug therapy
3.
Commun Biol ; 6(1): 292, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934154

ABSTRACT

Targeting immune-mediated, age-related, biology has the potential to be a transformative therapeutic strategy. However, the redundant nature of the multiple cytokines that change with aging requires identification of a master downstream regulator to successfully exert therapeutic efficacy. Here, we discovered CCR3 as a prime candidate, and inhibition of CCR3 has pro-cognitive benefits in mice, but these benefits are not driven by an obvious direct action on central nervous system (CNS)-resident cells. Instead, CCR3-expressing T cells in the periphery that are modulated in aging inhibit infiltration of these T cells across the blood-brain barrier and reduce neuroinflammation. The axis of CCR3-expressing T cells influencing crosstalk from periphery to brain provides a therapeutically tractable link. These findings indicate the broad therapeutic potential of CCR3 inhibition in a spectrum of neuroinflammatory diseases of aging.


Subject(s)
Aging , Brain , Receptors, CCR3 , T-Lymphocytes , Animals , Mice , Brain/metabolism , Central Nervous System , Cognition , Cytokines , Receptors, CCR3/genetics , Receptors, CCR3/metabolism , T-Lymphocytes/metabolism
4.
Brain Behav ; 12(9): e2736, 2022 09.
Article in English | MEDLINE | ID: mdl-35971662

ABSTRACT

INTRODUCTION: Increasing age is the number one risk factor for developing cognitive decline and neurodegenerative disease. Aged humans and mice exhibit numerous molecular changes that contribute to a decline in cognitive function and increased risk of developing age-associated diseases. Here, we characterize multiple age-associated changes in male C57BL/6J mice to understand the translational utility of mouse aging. METHODS: Male C57BL/6J mice from various ages between 2 and 24 months of age were used to assess behavioral, as well as, histological and molecular changes across three modalities: neuronal, microgliosis/neuroinflammation, and the neurovascular unit (NVU). Additionally, a cohort of 4- and 22-month-old mice was used to assess blood-brain barrier (BBB) breakdown. Mice in this cohort were treated with a high, acute dose of lipopolysaccharide (LPS, 10 mg/kg) or saline control 6 h prior to sacrifice followed by tail vein injection of 0.4 kDa sodium fluorescein (100 mg/kg) 2 h later. RESULTS: Aged mice showed a decline in cognitive and motor abilities alongside decreased neurogenesis, proliferation, and synapse density. Further, neuroinflammation and circulating proinflammatory cytokines were increased in aged mice. Additionally, we found changes at the BBB, including increased T cell infiltration in multiple brain regions and an exacerbation in BBB leakiness following chemical insult with age. There were also a number of readouts that were unchanged with age and have limited utility as markers of aging in male C57BL/6J mice. CONCLUSIONS: Here we propose that these changes may be used as molecular and histological readouts that correspond to aging-related behavioral decline. These comprehensive findings, in the context of the published literature, are an important resource toward deepening our understanding of normal aging and provide an important tool for studying aging in mice.


Subject(s)
Cognitive Dysfunction , Neurodegenerative Diseases , Aging/physiology , Animals , Cognitive Dysfunction/pathology , Cytokines/metabolism , Fluorescein/metabolism , Hippocampus/metabolism , Lipopolysaccharides , Male , Mice , Mice, Inbred C57BL
5.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33533918

ABSTRACT

The low-density lipoprotein receptor-related protein 1 (LRP1) is an endocytic and cell signaling transmembrane protein. Endothelial LRP1 clears proteinaceous toxins at the blood-brain barrier (BBB), regulates angiogenesis, and is increasingly reduced in Alzheimer's disease associated with BBB breakdown and neurodegeneration. Whether loss of endothelial LRP1 plays a direct causative role in BBB breakdown and neurodegenerative changes remains elusive. Here, we show that LRP1 inactivation from the mouse endothelium results in progressive BBB breakdown, followed by neuron loss and cognitive deficits, which is reversible by endothelial-specific LRP1 gene therapy. LRP1 endothelial knockout led to a self-autonomous activation of the cyclophilin A-matrix metalloproteinase-9 pathway in the endothelium, causing loss of tight junctions underlying structural BBB impairment. Cyclophilin A inhibition in mice with endothelial-specific LRP1 knockout restored BBB integrity and reversed and prevented neuronal loss and behavioral deficits. Thus, endothelial LRP1 protects against neurodegeneration by inhibiting cyclophilin A, which has implications for the pathophysiology and treatment of neurodegeneration linked to vascular dysfunction.


Subject(s)
Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Cyclophilin A/metabolism , Endothelial Cells/metabolism , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Signal Transduction/genetics , Alzheimer Disease/therapy , Animals , Cells, Cultured , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Cyclophilin A/antagonists & inhibitors , Cyclosporine/pharmacology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Female , Gene Knockout Techniques , Genetic Therapy/methods , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Male , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Transgenic , Neurons/metabolism , Signal Transduction/drug effects
6.
Nat Aging ; 1(6): 506-520, 2021 06.
Article in English | MEDLINE | ID: mdl-35291561

ABSTRACT

Apolipoprotein E4 (APOE4), the main susceptibility gene for Alzheimer's disease (AD), leads to vascular dysfunction, amyloid-ß pathology, neurodegeneration and dementia. How these different pathologies contribute to advanced-stage AD remains unclear. Using aged APOE knock-in mice crossed with 5xFAD mice, we show that, compared to APOE3, APOE4 accelerates blood-brain barrier (BBB) breakdown, loss of cerebral blood flow, neuronal loss and behavioral deficits independently of amyloid-ß. BBB breakdown was associated with activation of the cyclophilin A-matrix metalloproteinase-9 BBB-degrading pathway in pericytes. Suppression of this pathway improved BBB integrity and prevented further neuronal loss and behavioral deficits in APOE4;5FAD mice while having no effect on amyloid-ß pathology. Thus, APOE4 accelerates advanced-stage BBB breakdown and neurodegeneration in Alzheimer's mice via the cyclophilin A pathway in pericytes independently of amyloid-ß, which has implication for the pathogenesis and treatment of vascular and neurodegenerative disorder in AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Apolipoprotein E4/genetics , Alzheimer Disease/genetics , Cyclophilin A/genetics , Amyloid beta-Peptides/metabolism
8.
Nat Neurosci ; 20(3): 406-416, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28135240

ABSTRACT

Pericytes are perivascular mural cells of brain capillaries. They are positioned centrally in the neurovascular unit between endothelial cells, astrocytes and neurons. This position allows them to regulate key neurovascular functions of the brain. The role of pericytes in the regulation of cerebral blood flow (CBF) and neurovascular coupling remains, however, under debate. Using loss-of-function pericyte-deficient mice, here we show that pericyte degeneration diminishes global and individual capillary CBF responses to neuronal stimuli, resulting in neurovascular uncoupling, reduced oxygen supply to the brain and metabolic stress. Neurovascular deficits lead over time to impaired neuronal excitability and neurodegenerative changes. Thus, pericyte degeneration as seen in neurological disorders such as Alzheimer's disease may contribute to neurovascular dysfunction and neurodegeneration associated with human disease.


Subject(s)
Brain/blood supply , Cell Death/physiology , Nerve Degeneration/physiopathology , Oxygen/metabolism , Pericytes/pathology , Animals , Brain/metabolism , Capillaries/physiology , Female , Homeodomain Proteins/genetics , Male , Mice , Mice, Transgenic , Neurons/physiology , Receptor, Platelet-Derived Growth Factor beta/genetics , Stress, Physiological/physiology , Vasodilation/physiology
9.
Nat Med ; 22(9): 1050-5, 2016 09.
Article in English | MEDLINE | ID: mdl-27548576

ABSTRACT

Activated protein C (APC) is a blood protease with anticoagulant activity and cell-signaling activities mediated by the activation of protease-activated receptor 1 (F2R, also known as PAR1) and F2RL1 (also known as PAR3) via noncanonical cleavage. Recombinant variants of APC, such as the 3K3A-APC (Lys191-193Ala) mutant in which three Lys residues (KKK191-193) were replaced with alanine, and/or its other mutants with reduced (>90%) anticoagulant activity, engineered to reduce APC-associated bleeding risk while retaining normal cell-signaling activity, have shown benefits in preclinical models of ischemic stroke, brain trauma, multiple sclerosis, amyotrophic lateral sclerosis, sepsis, ischemic and reperfusion injury of heart, kidney and liver, pulmonary, kidney and gastrointestinal inflammation, diabetes and lethal body radiation. On the basis of proof-of-concept studies and an excellent safety profile in humans, 3K3A-APC has advanced to clinical trials as a neuroprotectant in ischemic stroke. Recently, 3K3A-APC has been shown to stimulate neuronal production by human neural stem and progenitor cells (NSCs) in vitro via a PAR1-PAR3-sphingosine-1-phosphate-receptor 1-Akt pathway, which suggests the potential for APC-based treatment as a strategy for structural repair in the human central nervous (CNS) system. Here we report that late postischemic treatment of mice with 3K3A-APC stimulates neuronal production by transplanted human NSCs, promotes circuit restoration and improves functional recovery. Thus, 3K3A-APC-potentiated neuronal recruitment from engrafted NSCs might offer a new approach to the treatment of stroke and related neurological disorders.


Subject(s)
Brain/drug effects , Cell Proliferation/drug effects , Infarction, Middle Cerebral Artery/physiopathology , Neural Stem Cells/drug effects , Protein C/pharmacology , Recombinant Proteins/pharmacology , Regeneration/drug effects , Animals , Behavior, Animal , Brain/metabolism , Brain Ischemia , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Flow Cytometry , Humans , Infarction, Middle Cerebral Artery/metabolism , Male , Mice , Neural Stem Cells/transplantation , Recovery of Function , Synapses
10.
J Cereb Blood Flow Metab ; 36(1): 216-27, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25757756

ABSTRACT

The blood­brain barrier (BBB) limits the entry of neurotoxic blood-derived products and cells into the brain that is required for normal neuronal functioning and information processing. Pericytes maintain the integrity of the BBB and degenerate in Alzheimer's disease (AD). The BBB is damaged in AD, particularly in individuals carrying apolipoprotein E4 (APOE4) gene, which is a major genetic risk factor for late-onset AD. The mechanisms underlying the BBB breakdown in AD remain, however, elusive. Here, we show accelerated pericyte degeneration in AD APOE4 carriers >AD APOE3 carriers >non-AD controls, which correlates with the magnitude of BBB breakdown to immunoglobulin G and fibrin. We also show accumulation of the proinflammatory cytokine cyclophilin A (CypA) and matrix metalloproteinase-9 (MMP-9) in pericytes and endothelial cells in AD (APOE4 >APOE3), previously shown to lead to BBB breakdown in transgenic APOE4 mice. The levels of the apoE lipoprotein receptor, low-density lipoprotein receptor-related protein-1 (LRP1), were similarly reduced in AD APOE4 and APOE3 carriers. Our data suggest that APOE4 leads to accelerated pericyte loss and enhanced activation of LRP1-dependent CypA­MMP-9 BBB-degrading pathway in pericytes and endothelial cells, which can mediate a greater BBB damage in AD APOE4 compared with AD APOE3 carriers.


Subject(s)
Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Blood-Brain Barrier/pathology , Pericytes/pathology , Aged , Aged, 80 and over , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Cell Count , Cohort Studies , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Female , Humans , Male , Pericytes/metabolism , Protein Isoforms
11.
Nat Neurosci ; 18(7): 978-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26005850

ABSTRACT

PICALM is a highly validated genetic risk factor for Alzheimer's disease (AD). We found that reduced expression of PICALM in AD and murine brain endothelium correlated with amyloid-ß (Aß) pathology and cognitive impairment. Moreover, Picalm deficiency diminished Aß clearance across the murine blood-brain barrier (BBB) and accelerated Aß pathology in a manner that was reversible by endothelial PICALM re-expression. Using human brain endothelial monolayers, we found that PICALM regulated PICALM/clathrin-dependent internalization of Aß bound to the low density lipoprotein receptor related protein-1, a key Aß clearance receptor, and guided Aß trafficking to Rab5 and Rab11, leading to Aß endothelial transcytosis and clearance. PICALM levels and Aß clearance were reduced in AD-derived endothelial monolayers, which was reversible by adenoviral-mediated PICALM transfer. Inducible pluripotent stem cell-derived human endothelial cells carrying the rs3851179 protective allele exhibited higher PICALM levels and enhanced Aß clearance. Thus, PICALM regulates Aß BBB transcytosis and clearance, which has implications for Aß brain homeostasis and clearance therapy.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Cerebral Cortex/metabolism , Monomeric Clathrin Assembly Proteins/metabolism , Animals , Capillaries/metabolism , Endothelium, Vascular/metabolism , Homeostasis , Humans , Metabolic Clearance Rate , Mice , Mice, Knockout , Monomeric Clathrin Assembly Proteins/deficiency , Pluripotent Stem Cells , Transcytosis
12.
Nat Neurosci ; 18(4): 521-530, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25730668

ABSTRACT

The glucose transporter GLUT1 at the blood-brain barrier (BBB) mediates glucose transport into the brain. Alzheimer's disease is characterized by early reductions in glucose transport associated with diminished GLUT1 expression at the BBB. Whether GLUT1 reduction influences disease pathogenesis remains, however, elusive. Here we show that GLUT1 deficiency in mice overexpressing amyloid ß-peptide (Aß) precursor protein leads to early cerebral microvascular degeneration, blood flow reductions and dysregulation and BBB breakdown, and to accelerated amyloid ß-peptide (Aß) pathology, reduced Aß clearance, diminished neuronal activity, behavioral deficits, and progressive neuronal loss and neurodegeneration that develop after initial cerebrovascular degenerative changes. We also show that GLUT1 deficiency in endothelium, but not in astrocytes, initiates the vascular phenotype as shown by BBB breakdown. Thus, reduced BBB GLUT1 expression worsens Alzheimer's disease cerebrovascular degeneration, neuropathology and cognitive function, suggesting that GLUT1 may represent a therapeutic target for Alzheimer's disease vasculo-neuronal dysfunction and degeneration.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier , Cerebrovascular Circulation/physiology , Endothelium, Vascular , Glucose Transporter Type 1/deficiency , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Disease Models, Animal , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Mice , Mice, Inbred C57BL , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...