Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 960932, 2022.
Article in English | MEDLINE | ID: mdl-36033872

ABSTRACT

Early in the pandemic, in March of 2020, an outbreak of COVID-19 occurred aboard the aircraft carrier USS Theodore Roosevelt (CVN-71), during deployment in the Western Pacific. Out of the crew of 4,779 personnel, 1,331 service members were suspected or confirmed to be infected with SARS-CoV-2. The demographic, epidemiologic, and laboratory findings of service members from subsequent investigations have characterized the outbreak as widespread transmission of virus with relatively mild symptoms and asymptomatic infection among mostly young healthy adults. At the time, there was no available vaccination against COVID-19 and there was very limited knowledge regarding SARS-CoV-2 mutation, dispersal, and transmission patterns among service members in a shipboard environment. Since that time, other shipboard outbreaks from which data can be extracted have occurred, but these later shipboard outbreaks have occurred largely in settings where the majority of the crew were vaccinated, thereby limiting spread of the virus, shortening duration of the outbreaks, and minimizing evolution of the virus within those close quarters settings. On the other hand, since the outbreak on the CVN-71 occurred prior to widespread vaccination, it continued over the course of roughly two months, infecting more than 25% of the crew. In order to better understand genetic variability and potential transmission dynamics of COVID-19 in a shipboard environment of immunologically naïve, healthy individuals, we performed whole-genome sequencing and virus culture from eighteen COVID-19-positive swabs collected over the course of one week. Using the unique variants identified in those genomes, we detected seven discrete groups of individuals within the population aboard CVN-71 infected with viruses of distinct genomic signature. This is in stark contrast to a recent outbreak aboard another U.S. Navy ship with >98% vaccinated crew after a port visit in Reykjavik, Iceland, where the outbreak lasted only approximately 2 weeks and the virus was clonal. Taken together, these results demonstrate the utility of sequencing from complex clinical samples for molecular epidemiology and they also suggest that a high rate of vaccination among a population in close communities may greatly reduce spread, thereby restricting evolution of the virus.

2.
Nat Commun ; 12(1): 4999, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404769

ABSTRACT

The type I interferon (IFN) signaling pathway has important functions in resistance to viral infection, with the downstream induction of interferon stimulated genes (ISG) protecting the host from virus entry, replication and spread. Listeria monocytogenes (Lm), a facultative intracellular foodborne pathogen, can exploit the type I IFN response as part of their pathogenic strategy, but the molecular mechanisms involved remain unclear. Here we show that type I IFN suppresses the antibacterial activity of phagocytes to promote systemic Lm infection. Mechanistically, type I IFN suppresses phagosome maturation and proteolysis of Lm virulence factors ActA and LLO, thereby promoting phagosome escape and cell-to-cell spread; the antiviral protein, IFN-induced transmembrane protein 3 (IFITM3), is required for this type I IFN-mediated alteration. Ifitm3-/- mice are resistant to systemic infection by Lm, displaying decreased bacterial spread in tissues, and increased immune cell recruitment and pro-inflammatory cytokine signaling. Together, our findings show how an antiviral mechanism in phagocytes can be exploited by bacterial pathogens, and implicate IFITM3 as a potential antimicrobial therapeutic target.


Subject(s)
Anti-Bacterial Agents/pharmacology , Listeria/drug effects , Listeriosis/immunology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Phagocytes/immunology , Phagocytes/microbiology , Animals , Disease Models, Animal , Host-Pathogen Interactions , Interferon Type I/metabolism , Listeria monocytogenes/immunology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagosomes/immunology , RAW 264.7 Cells , Transcriptome , Virulence Factors , Virus Internalization/drug effects
4.
Infect Immun ; 86(3)2018 03.
Article in English | MEDLINE | ID: mdl-29263107

ABSTRACT

Listeria monocytogenes is a Gram-positive intracellular pathogen that causes a severe invasive disease. Upon infecting a host cell, L. monocytogenes upregulates the transcription of numerous factors necessary for productive infection. VirR is the response regulator component of a two-component regulatory system in L. monocytogenes In this report, we have identified the putative ABC transporter encoded by genes lmo1746-lmo1747 as necessary for VirR function. We have designated lmo1746-lmo1747 virAB We constructed an in-frame deletion of virAB and determined that the ΔvirAB mutant exhibited reduced transcription of VirR-regulated genes. The ΔvirAB mutant also showed defects in in vitro plaque formation and in vivo virulence that were similar to those of a ΔvirR deletion mutant. Since VirR is important for innate resistance to antimicrobial agents, we determined the MICs of nisin and bacitracin for ΔvirAB bacteria. We found that VirAB expression was necessary for nisin resistance but was dispensable for resistance to bacitracin. This result suggested a VirAB-independent mechanism of VirR regulation in response to bacitracin. Lastly, we found that the ΔvirR and ΔvirAB mutants had no deficiency in growth in broth culture, intracellular replication, or production of the ActA surface protein, which facilitates actin-based motility and cell-to-cell spread. However, the ΔvirR and ΔvirAB mutants produced shorter actin tails during intracellular infection, which suggested that these mutants have a reduced ability to move and spread via actin-based motility. These findings have demonstrated that L. monocytogenes VirAB functions in a pathway with VirR to regulate the expression of genes necessary for virulence and resistance to antimicrobial agents.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Listeria monocytogenes/metabolism , Listeria monocytogenes/pathogenicity , Listeriosis/microbiology , Nisin/pharmacology , Transcription Factors/genetics , ATP-Binding Cassette Transporters/genetics , Animals , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Female , Gene Expression Regulation, Bacterial , Humans , Listeria monocytogenes/drug effects , Listeria monocytogenes/genetics , Mice, Inbred BALB C , Microbial Sensitivity Tests , Regulon , Transcription Factors/metabolism , Virulence
5.
Article in English | MEDLINE | ID: mdl-28807909

ABSTRACT

Widespread antibiotic use in clinical medicine and the livestock industry has contributed to the global spread of multidrug-resistant (MDR) bacterial pathogens, including Acinetobacter baumannii We report on a method used to produce a personalized bacteriophage-based therapeutic treatment for a 68-year-old diabetic patient with necrotizing pancreatitis complicated by an MDR A. baumannii infection. Despite multiple antibiotic courses and efforts at percutaneous drainage of a pancreatic pseudocyst, the patient deteriorated over a 4-month period. In the absence of effective antibiotics, two laboratories identified nine different bacteriophages with lytic activity for an A. baumannii isolate from the patient. Administration of these bacteriophages intravenously and percutaneously into the abscess cavities was associated with reversal of the patient's downward clinical trajectory, clearance of the A. baumannii infection, and a return to health. The outcome of this case suggests that the methods described here for the production of bacteriophage therapeutics could be applied to similar cases and that more concerted efforts to investigate the use of therapeutic bacteriophages for MDR bacterial infections are warranted.


Subject(s)
Acinetobacter Infections/therapy , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/therapeutic use , Bacteriophages/classification , Pancreatic Pseudocyst/therapy , Pancreatitis, Acute Necrotizing/therapy , Phage Therapy/methods , Acinetobacter Infections/microbiology , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/virology , Aged , Drug Resistance, Multiple, Bacterial , Gallstones/pathology , Humans , Male , Minocycline/therapeutic use , Pancreatic Pseudocyst/microbiology , Pancreatitis, Acute Necrotizing/microbiology
6.
Antimicrob Agents Chemother ; 60(10): 5806-16, 2016 10.
Article in English | MEDLINE | ID: mdl-27431214

ABSTRACT

Multidrug-resistant bacterial pathogens are an increasing threat to public health, and lytic bacteriophages have reemerged as a potential therapeutic option. In this work, we isolated and assembled a five-member cocktail of wild phages against Acinetobacter baumannii and demonstrated therapeutic efficacy in a mouse full-thickness dorsal infected wound model. The cocktail lowers the bioburden in the wound, prevents the spread of infection and necrosis to surrounding tissue, and decreases infection-associated morbidity. Interestingly, this effective cocktail is composed of four phages that do not kill the parent strain of the infection and one phage that simply delays bacterial growth in vitro via a strong but incomplete selection event. The cocktail here appears to function in a combinatorial manner, as one constituent phage targets capsulated A. baumannii bacteria and selects for loss of receptor, shifting the population to an uncapsulated state that is then sensitized to the remaining four phages in the cocktail. Additionally, capsule is a known virulence factor for A. baumannii, and we demonstrated that the emergent uncapsulated bacteria are avirulent in a Galleria mellonella model. These results highlight the importance of anticipating population changes during phage therapy and designing intelligent cocktails to control emergent strains, as well as the benefits of using phages that target virulence factors. Because of the efficacy of this cocktail isolated from a limited environmental pool, we have established a pipeline for developing new phage therapeutics against additional clinically relevant multidrug-resistant pathogens by using environmental phages sourced from around the globe.


Subject(s)
Acinetobacter Infections/therapy , Acinetobacter baumannii/virology , Bacteriophages , Wound Infection/therapy , Acinetobacter Infections/virology , Acinetobacter baumannii/chemistry , Acinetobacter baumannii/pathogenicity , Animals , Drug Resistance, Multiple, Bacterial , Female , Mice, Inbred BALB C , Moths/microbiology , Sewage/virology , Spectrum Analysis, Raman , Wound Infection/virology
7.
PLoS One ; 9(12): e113696, 2014.
Article in English | MEDLINE | ID: mdl-25517120

ABSTRACT

Listeria monocytogenes is a Gram-positive, food-borne pathogen of humans and animals. L. monocytogenes is considered to be a potential public health risk by the U.S. Food and Drug Administration (FDA), as this bacterium can easily contaminate ready-to-eat (RTE) foods and cause an invasive, life-threatening disease (listeriosis). Bacteria can adhere and grow on multiple surfaces and persist within biofilms in food processing plants, providing resistance to sanitizers and other antimicrobial agents. While whole genome sequencing has led to the identification of biofilm synthesis gene clusters in many bacterial species, bioinformatics has not identified the biofilm synthesis genes within the L. monocytogenes genome. To identify genes necessary for L. monocytogenes biofilm formation, we performed a transposon mutagenesis library screen using a recently constructed Himar1 mariner transposon. Approximately 10,000 transposon mutants within L. monocytogenes strain 10403S were screened for biofilm formation in 96-well polyvinyl chloride (PVC) microtiter plates with 70 Himar1 insertion mutants identified that produced significantly less biofilms. DNA sequencing of the transposon insertion sites within the isolated mutants revealed transposon insertions within 38 distinct genetic loci. The identification of mutants bearing insertions within several flagellar motility genes previously known to be required for the initial stages of biofilm formation validated the ability of the mutagenesis screen to identify L. monocytogenes biofilm-defective mutants. Two newly identified genetic loci, dltABCD and phoPR, were selected for deletion analysis and both ΔdltABCD and ΔphoPR bacterial strains displayed biofilm formation defects in the PVC microtiter plate assay, confirming these loci contribute to biofilm formation by L. monocytogenes.


Subject(s)
Biofilms/growth & development , Listeria monocytogenes/physiology , Bacterial Adhesion , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Transposable Elements/genetics , Extracellular Space/metabolism , Genetic Loci/genetics , Listeria monocytogenes/cytology , Listeria monocytogenes/genetics , Listeria monocytogenes/metabolism , Mutagenesis , Mutation , Phosphates/metabolism , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...