Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Immunity ; 56(5): 979-997.e11, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37100060

ABSTRACT

Immune cell trafficking constitutes a fundamental component of immunological response to tissue injury, but the contribution of intrinsic RNA nucleotide modifications to this response remains elusive. We report that RNA editor ADAR2 exerts a tissue- and stress-specific regulation of endothelial responses to interleukin-6 (IL-6), which tightly controls leukocyte trafficking in IL-6-inflamed and ischemic tissues. Genetic ablation of ADAR2 from vascular endothelial cells diminished myeloid cell rolling and adhesion on vascular walls and reduced immune cell infiltration within ischemic tissues. ADAR2 was required in the endothelium for the expression of the IL-6 receptor subunit, IL-6 signal transducer (IL6ST; gp130), and subsequently, for IL-6 trans-signaling responses. ADAR2-induced adenosine-to-inosine RNA editing suppressed the Drosha-dependent primary microRNA processing, thereby overwriting the default endothelial transcriptional program to safeguard gp130 expression. This work demonstrates a role for ADAR2 epitranscriptional activity as a checkpoint in IL-6 trans-signaling and immune cell trafficking to sites of tissue injury.


Subject(s)
Interleukin-6 , RNA , Endothelial Cells/metabolism , Cytokine Receptor gp130 , Endothelium/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism
2.
J Invest Dermatol ; 143(7): 1257-1267.e10, 2023 07.
Article in English | MEDLINE | ID: mdl-36736996

ABSTRACT

Keratinocytes (KCs) form the outer epithelial barrier of the body, protecting against invading pathogens. Mice lacking the IL-17RA or both IL-17A and IL-17F develop spontaneous Staphylococcusaureus skin infections. We found a marked expansion of T17 cells, comprised of RORγt-expressing γδ T cells and T helper 17 cells in the skin-draining lymph nodes of these mice. Contradictory to previous suggestions, this expansion was not a result of a direct negative feedback loop because we found no expansion of T17 cells in mice lacking IL-17 signaling specifically in T cells. Instead, we found that the T17 expansion depended on the microbiota and was observed only when KCs were deficient for IL-17RA signaling. Indeed, mice that lack IL-17RA only in KCs showed an increased susceptibility to experimental epicutaneous infection with S. aureus together with an accumulation of IL-17A-producing γδ T cells. We conclude that deficiency of IL-17RA on KCs leads to microbiota dysbiosis in the skin, which triggers the expansion of IL-17A-producing T cells. Our data show that KCs are the primary target cells of IL-17A and IL-17F, coordinating the defense against microbial invaders in the skin.


Subject(s)
Interleukin-17 , Staphylococcus aureus , Mice , Animals , Mice, Knockout , Skin , Keratinocytes , Mice, Inbred C57BL
3.
Oncogene ; 41(46): 5008-5019, 2022 11.
Article in English | MEDLINE | ID: mdl-36224342

ABSTRACT

Brain metastasis in breast cancer remains difficult to treat and its incidence is increasing. Therefore, the development of new therapies is of utmost clinical relevance. Recently, toll-like receptor (TLR) 4 was correlated with IL6 expression and poor prognosis in 1 215 breast cancer primaries. In contrast, we demonstrated that TLR4 stimulation reduces microglia-assisted breast cancer cell invasion. However, the expression, prognostic value, or therapeutic potential of TLR signaling in breast cancer brain metastasis have not been investigated. We thus tested the prognostic value of various TLRs in two brain-metastasis gene sets. Furthermore, we investigated different TLR agonists, as well as MyD88 and TRIF-deficient microenvironments in organotypic brain-slice ex vivo co-cultures and in vivo colonization experiments. These experiments underline the ambiguous roles of TLR4, its adapter MyD88, and the target nitric oxide (NO) during brain colonization. Moreover, analysis of the gene expression datasets of breast cancer brain metastasis patients revealed associations of TLR1 and IL6 with poor overall survival. Finally, our finding that a single LPS application at the onset of colonization shapes the later microglia/macrophage reaction at the macro-metastasis brain-parenchyma interface (MMPI) and reduces metastatic infiltration into the brain parenchyma may prove useful in immunotherapeutic considerations.


Subject(s)
Brain Neoplasms , Breast Neoplasms , Humans , Female , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Interleukin-6/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/genetics , Brain/pathology , Brain Neoplasms/drug therapy , Adaptor Proteins, Vesicular Transport/metabolism , Tumor Microenvironment
4.
Amino Acids ; 54(10): 1339-1356, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35451695

ABSTRACT

The essential amino acid tryptophan (Trp) is metabolized by gut commensals, yielding in compounds that affect innate immune cell functions directly, but also acting on the aryl hydrocarbon receptor (AHR), thus regulating the maintenance of group 3 innate lymphoid cells (ILCs), promoting T helper 17 (TH17) cell differentiation, and interleukin-22 production. In addition, microbiota-derived Trp metabolites have direct effects on the vascular endothelium, thus influencing the development of vascular inflammatory phenotypes. Indoxyl sulfate was demonstrated to promote vascular inflammation, whereas indole-3-propionic acid and indole-3-aldehyde had protective roles. Furthermore, there is increasing evidence for a contributory role of microbiota-derived indole-derivatives in blood pressure regulation and hypertension. Interestingly, there are indications for a role of the kynurenine pathway in atherosclerotic lesion development. Here, we provide an overview on the emerging role of gut commensals in the modulation of Trp metabolism and its influence in cardiovascular disease development.


Subject(s)
Cardiovascular Diseases , Microbiota , Humans , Tryptophan/metabolism , Immunity, Innate , Lymphocytes , Indoles/metabolism , Inflammation
5.
Cell Rep ; 38(13): 110565, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354043

ABSTRACT

Interleukin (IL)-10 is considered a prototypical anti-inflammatory cytokine, significantly contributing to the maintenance and reestablishment of immune homeostasis. Accordingly, it has been shown in the intestine that IL-10 produced by Tregs can act on effector T cells, thereby limiting inflammation. Herein, we investigate whether this role also applies to IL-10 produced by T cells during central nervous system (CNS) inflammation. During neuroinflammation, both CNS-resident and -infiltrating cells produce IL-10; yet, as IL-10 has a pleotropic function, the exact contribution of the different cellular sources is not fully understood. We find that T-cell-derived IL-10, but not other relevant IL-10 sources, can promote inflammation in experimental autoimmune encephalomyelitis. Furthermore, in the CNS, T-cell-derived IL-10 acts on effector T cells, promoting their survival and thereby enhancing inflammation and CNS autoimmunity. Our data indicate a pro-inflammatory role of T-cell-derived IL-10 in the CNS.


Subject(s)
Interleukin-10 , T-Lymphocytes , Animals , CD4-Positive T-Lymphocytes , Cell Survival , Central Nervous System , Inflammation , Interleukin-10/physiology , Mice
6.
Nature ; 600(7890): 707-712, 2021 12.
Article in English | MEDLINE | ID: mdl-34853467

ABSTRACT

Pro-inflammatory T cells in the central nervous system (CNS) are causally associated with multiple demyelinating and neurodegenerative diseases1-6, but the pathways that control these responses remain unclear. Here we define a population of inflammatory group 3 innate lymphoid cells (ILC3s) that infiltrate the CNS in a mouse model of multiple sclerosis. These ILC3s are derived from the circulation, localize in proximity to infiltrating T cells in the CNS, function as antigen-presenting cells that restimulate myelin-specific T cells, and are increased in individuals with multiple sclerosis. Notably, antigen presentation by inflammatory ILC3s is required to promote T cell responses in the CNS and the development of multiple-sclerosis-like disease in mouse models. By contrast, conventional and tissue-resident ILC3s in the periphery do not appear to contribute to disease induction, but instead limit autoimmune T cell responses and prevent multiple-sclerosis-like disease when experimentally targeted to present myelin antigen. Collectively, our data define a population of inflammatory ILC3s that is essential for directly promoting T-cell-dependent neuroinflammation in the CNS and reveal the potential of harnessing peripheral tissue-resident ILC3s for the prevention of autoimmune disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Antigen-Presenting Cells , Antigens/metabolism , Immunity, Innate , Lymphocytes , Mice , Neuroinflammatory Diseases , Sclerosis/metabolism
7.
Adv Immunol ; 149: 25-34, 2021.
Article in English | MEDLINE | ID: mdl-33993919

ABSTRACT

Multiple sclerosis (MS) is a complex inflammatory disease of the central nervous system (CNS) with an unknown etiology. Thereby, MS is not a uniform disease but rather represents a spectrum of disorders, where each aspect needs to be modeled with specific requirements-for a systematic overview see our previous issue of this review (Kurschus, Wortge, & Waisman, 2011). However, there is broad consensus about the critical involvement of the immune system in the disease pathogenesis. To better understand how the immune system contributes to CNS autoimmunity, the model of experimental autoimmune encephalomyelitis (EAE) was developed. EAE can be induced in susceptible animals in many different ways, with the most popular protocol involving the activation of self-reactive T cells by a peptide based on the myelin oligodendrocyte glycoprotein sequence. In the last 10 years this model has led to major advances in our understanding of the immune system, especially the nature of IL-17-producing T cells (Th17 cells), host-microbiome interactions, the gut-brain axis and how the immune system can cause damage in different regions of the brain and the spinal cord. This update summarizes some of the main achievements in the field in the last 10 years.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Central Nervous System , Humans , Mice , Mice, Inbred C57BL , Myelin-Oligodendrocyte Glycoprotein , Th17 Cells
8.
Sci Immunol ; 6(56)2021 02 05.
Article in English | MEDLINE | ID: mdl-33547052

ABSTRACT

Interleukin-17A- (IL-17A) and IL-17F-producing CD4+ T helper cells (TH17 cells) are implicated in the development of chronic inflammatory diseases, such as multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). TH17 cells also orchestrate leukocyte invasion of the central nervous system (CNS) and subsequent tissue damage. However, the role of IL-17A and IL-17F as effector cytokines is still confused with the encephalitogenic function of the cells that produce these cytokines, namely, TH17 cells, fueling a long-standing debate in the neuroimmunology field. Here, we demonstrated that mice deficient for IL-17A/F lose their susceptibility to EAE, which correlated with an altered composition of their gut microbiota. However, loss of IL-17A/F in TH cells did not diminish their encephalitogenic capacity. Reconstitution of a wild-type-like intestinal microbiota or reintroduction of IL-17A specifically into the gut epithelium of IL-17A/F-deficient mice reestablished their susceptibility to EAE. Thus, our data demonstrated that IL-17A and IL-17F are not encephalitogenic mediators but rather modulators of intestinal homeostasis that indirectly alter CNS-directed autoimmunity.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/immunology , Gastrointestinal Microbiome/immunology , Interleukin-17/metabolism , Multiple Sclerosis/immunology , Adoptive Transfer , Animals , Central Nervous System/immunology , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/microbiology , Encephalomyelitis, Autoimmune, Experimental/pathology , Fecal Microbiota Transplantation , Female , Humans , Interleukin-17/genetics , Male , Mice , Mice, Knockout , Multiple Sclerosis/pathology , Th17 Cells/immunology , Th17 Cells/transplantation
9.
Acta Neuropathol ; 140(4): 549-567, 2020 10.
Article in English | MEDLINE | ID: mdl-32651669

ABSTRACT

The proinflammatory cytokine interleukin 1 (IL-1) is crucially involved in the pathogenesis of multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). Herein, we studied the role of IL-1 signaling in blood-brain barrier (BBB) endothelial cells (ECs), astrocytes and microglia for EAE development, using mice with the conditional deletion of its signaling receptor IL-1R1. We found that IL-1 signaling in microglia and astrocytes is redundant for the development of EAE, whereas the IL-1R1 deletion in BBB-ECs markedly ameliorated disease severity. IL-1 signaling in BBB-ECs upregulated the expression of the adhesion molecules Vcam-1, Icam-1 and the chemokine receptor Darc, all of which have been previously shown to promote CNS-specific inflammation. In contrast, IL-1R1 signaling suppressed the expression of the stress-responsive heme catabolizing enzyme heme oxygenase-1 (HO-1) in BBB-ECs, promoting disease progression via a mechanism associated with deregulated expression of the IL-1-responsive genes Vcam1, Icam1 and Ackr1 (Darc). Mechanistically, our data emphasize a functional crosstalk of BBB-EC IL-1 signaling and HO-1, controlling the transcription of downstream proinflammatory genes promoting the pathogenesis of autoimmune neuroinflammation.


Subject(s)
Blood-Brain Barrier/enzymology , Encephalomyelitis, Autoimmune, Experimental/immunology , Endothelial Cells/enzymology , Heme Oxygenase-1/metabolism , Inflammation/immunology , Interleukin-1/immunology , Animals , Blood-Brain Barrier/immunology , Encephalomyelitis, Autoimmune, Experimental/enzymology , Gene Expression Regulation/immunology , Mice , Mice, Inbred C57BL , Signal Transduction/immunology
10.
Sci Immunol ; 4(40)2019 10 11.
Article in English | MEDLINE | ID: mdl-31604844

ABSTRACT

The notion of "immune privilege" of the brain has been revised to accommodate its infiltration, at steady state, by immune cells that participate in normal neurophysiology. However, the immune mechanisms that regulate learning and memory remain poorly understood. Here, we show that noninflammatory interleukin-17 (IL-17) derived from a previously unknown fetal-derived meningeal-resident γδ T cell subset promotes cognition. When tested in classical spatial learning paradigms, mice lacking γδ T cells or IL-17 displayed deficient short-term memory while retaining long-term memory. The plasticity of glutamatergic synapses was reduced in the absence of IL-17, resulting in impaired long-term potentiation in the hippocampus. Conversely, IL-17 enhanced glial cell production of brain-derived neurotropic factor, whose exogenous provision rescued the synaptic and behavioral phenotypes of IL-17-deficient animals. Together, our work provides previously unknown clues on the mechanisms that regulate short-term versus long-term memory and on the evolutionary and functional link between the immune and nervous systems.


Subject(s)
Interleukin-17/immunology , Memory, Short-Term , Meninges/immunology , Neuronal Plasticity/immunology , T-Lymphocytes/immunology , Animals , Interleukin-17/deficiency , Mice , Mice, Inbred C57BL , Mice, Knockout
11.
Exp Dermatol ; 28(3): 321-323, 2019 03.
Article in English | MEDLINE | ID: mdl-30703249

ABSTRACT

Proinflammatory IL-17 plays an important role in various diseases and defence against extracellular microorganisms. Healing of leishmaniasis is promoted by Th1/Tc1 cells, whereas Th2/Treg are associated with worsened disease outcome. In addition, high expression of IL-17A in Leishmania-susceptible BALB/c and artificial overexpression of IL-17A in T cells in resistant C57BL/6 mice worsened disease outcome. Since C57BL/6 mice lacking only IL-17A exhibited no phenotype, and IL-17A and IL-17F share similar receptors, but differentially regulate chemokine secretion, we studied mice lacking both IL-17A and IL-17F (IL-17A/F-/- ) in infections with Leishmania major. Interestingly, lesion volumes and parasite burdens were comparable to controls, IL-17A/F-/- mice developed a Th1/Tc1 phenotype, and exhibited normal lesion resolution. Thus, in C57BL/6 mice, secretion of IL-17A and IL-17F does not influence disease progression. It appears that-depending on the genetic background-cytokines of the IL-17 family might be responsible for disease progression primarily in susceptible mice.


Subject(s)
Interleukin-17/immunology , Leishmaniasis/immunology , Th1 Cells/parasitology , Th2 Cells/parasitology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/parasitology , Crosses, Genetic , Cytokines/metabolism , Disease Progression , Female , Intraepithelial Lymphocytes/cytology , Intraepithelial Lymphocytes/parasitology , Leishmania/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype , Th1 Cells/cytology , Th2 Cells/cytology
12.
Cell Rep ; 26(7): 1854-1868.e5, 2019 02 12.
Article in English | MEDLINE | ID: mdl-30759395

ABSTRACT

Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and "toxic" gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function restraining methylation of Treg cell-specific conserved non-coding sequence 2 (CNS2) in the Foxp3 locus. Consequently, CNS2 is heavily methylated when Blimp1 is ablated, leading to a loss of Foxp3 expression and severe disease. These findings identify a Blimp1-dependent pathway that preserves Treg cell stability in inflamed non-lymphoid tissues.


Subject(s)
DNA Methylation , Encephalomyelitis, Autoimmune, Experimental/immunology , Forkhead Transcription Factors/genetics , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/immunology , T-Lymphocytes, Regulatory/immunology , Animals , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , DNA (Cytosine-5-)-Methyltransferases/immunology , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Epigenesis, Genetic , Female , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/immunology , Genomic Imprinting , Interleukin-6/immunology , Male , Mice , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/metabolism
13.
Gastroenterology ; 156(3): 692-707.e7, 2019 02.
Article in English | MEDLINE | ID: mdl-30315770

ABSTRACT

BACKGROUND & AIMS: The CYLD lysine 63 deubiquitinase gene (CYLD) encodes tumor suppressor protein that is mutated in familial cylindromatosus, and variants have been associated with Crohn disease (CD). Splice forms of CYLD that lack exons 7 and 8 regulate transcription factors and functions of immune cells. We examined the expression of splice forms of CYLD in colon tissues from patients with CD and their effects in mice. METHODS: We performed immunohistochemical analyses of colon tissues from patients with untreated CD and patients without inflammatory bowel diseases (controls). We obtained mice that expressed splice forms of CYLD (sCYLD mice) without or with SMAD7 (sCYLD/SMAD7 mice) from transgenes and CYLD-knockout mice (with or without transgenic expression of SMAD7) and performed endoscopic analyses. Colitis was induced in Rag1-/- mice by transfer of CD4+ CD62L+ T cells from C57/Bl6 or transgenic mice. T cells were isolated from mice and analyzed by flow cytometry and quantitative real-time polymerase chain reaction and intestinal tissues were analyzed by histology and immunohistochemistry. CYLD forms were expressed in mouse embryonic fibroblasts, primary T cells, and HEK293T cells, which were analyzed by immunoblot, mobility shift, and immunoprecipitation assays. RESULTS: The colonic lamina propria from patients with CD was infiltrated by T cells and had higher levels of sCYLD (but not full-length CYLD) and SMAD7 than tissues from controls. Incubation of mouse embryonic fibroblasts and T cells with transforming growth factor ß increased their production of sCYLD and decreased full-length CYLD. Transgenic expression of sCYLD and SMAD7 in T cells prevented the differentiation of regulatory T cells and T-helper type 17 cells and increased the differentiation of T-helper type 1 cells. The same effects were observed in colon tissues from sCYLD/SMAD7 mice but not in those from CYLD-knockout SMAD7 mice. The sCYLD mice had significant increases in the numbers of T-helper type 1 cells and CD44high CD62Llow memory-effector CD4+ T cells in the spleen and mesenteric lymph nodes compared with wild-type mice; sCYLD/SMAD7 mice had even larger increases. The sCYLD/SMAD7 mice spontaneously developed severe colitis, with infiltration of the colon by dendritic cells, neutrophils, macrophages, and CD4+ T cells and increased levels of Ifng, Il6, Il12a, Il23a, and Tnf mRNAs. Co-transfer of regulatory T cells from wild-type, but not from sCYLD/SMAD7, mice prevented the induction of colitis in Rag1-/- mice by CD4+ T cells. We found increased levels of poly-ubiquitinated SMAD7 in sCYLD CD4+ T cells. CYLD formed a nuclear complex with SMAD3, whereas sCYLD recruited SMAD7 to the nucleus, which inhibited the expression of genes regulated by SMAD3 and SMAD4. We found that sCYLD mediated lysine 63-linked ubiquitination of SMAD7. The sCYLD-SMAD7 complex inhibited transforming growth factor ß signaling in CD4+ T cells. CONCLUSIONS: Levels of the spliced form of CYLD are increased in colon tissues from patients with CD. sCYLD mediates ubiquitination and nuclear translocation of SMAD7 and thereby decreases transforming growth factor ß signaling in T cells. This prevents immune regulatory mechanisms and leads to colitis in mice.


Subject(s)
Crohn Disease/genetics , Crohn Disease/pathology , Cysteine Endopeptidases/genetics , Smad7 Protein/genetics , Ubiquitination/genetics , Animals , Biopsy, Needle , Deubiquitinating Enzyme CYLD , Disease Models, Animal , Flow Cytometry , Humans , Immunohistochemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Random Allocation , Reference Values , Signal Transduction , Transforming Growth Factor beta1/genetics
14.
J Mol Med (Berl) ; 96(8): 819-829, 2018 08.
Article in English | MEDLINE | ID: mdl-29959474

ABSTRACT

IL-17A and IL-17F share the highest sequence homology of the IL-17 family and signal via the same IL-17RA/RC receptor heterodimer. To better explore the expression of these two cytokines, we used a double reporter mouse strain (IL-17DR mice), where IL-17A expressing cells are marked by enhanced green fluorescent protein (eGFP) while red fluorescence protein (RFP) reports the expression of IL-17F. In steady state, we found that Th17 and γδ T cells only expressed IL-17A, while IL-17F expression was restricted to CD8 T cells (Tc17) and innate lymphoid cells (ILC type 3) of the gut. In experimental autoimmune encephalomyelitis, the vast majority of CNS-infiltrating Th17 cells expressed IL-17A but not IL-17F. In contrast, anti-CD3-induced, TGF-ß-driven Th17 cells in the gut expressed both of these IL-17 cytokines. In line with this, in vitro differentiation of Th17 cells in the presence of IL-1ß led primarily to IL-17A expressing T cells, while TGF-ß induced IL-17F co-expressing Th17 cells. Our results suggest that expression of IL-17F is associated with non-pathogenic T cells, pointing to a differential function of IL-17A versus IL-17F. KEY MESSAGES: Naïve mice: CD4+ T cells and γδ T cells express IL-17A, and Tc17 cells express IL-17F. Gut ILC3 show differential expression of IL17A and F. Th17 differentiation with TGF-ß1 induces IL-17A and F, whereas IL-1ß induced cells expressing IL-17A. Th17 cells in EAE in CNS express IL-17A only. Gut Th17 cells induced by anti-CD3 express IL-17A and F together as skin γδ T cells of IMQ-treated mice.


Subject(s)
Gene Expression , Interleukin-17/genetics , Th17 Cells/metabolism , Animals , Biomarkers , Cell Differentiation/immunology , Disease Susceptibility , Encephalomyelitis, Autoimmune, Experimental , Immunophenotyping , Interleukin-17/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Mice , Mice, Transgenic , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th17 Cells/cytology , Th17 Cells/immunology
15.
Front Immunol ; 9: 587, 2018.
Article in English | MEDLINE | ID: mdl-29662492

ABSTRACT

Aicardi-Goutières syndrome (AGS) is a rare early onset childhood encephalopathy caused by persistent neuroinflammation of autoimmune origin. AGS is a genetic disorder and >50% of affected individuals bear hypomorphic mutations in ribonuclease H2 (RNase H2). All available RNase H2 mouse models so far fail to mimic the prominent CNS involvement seen in AGS. To establish a mouse model recapitulating the human disease, we deleted RNase H2 specifically in the brain, the most severely affected organ in AGS. Although RNase H2ΔGFAP mice lacked the nuclease in astrocytes and a majority of neurons, no disease signs were apparent in these animals. We additionally confirmed these results in a second, neuron-specific RNase H2 knockout mouse line. However, when astrocytes were isolated from brains of RNase H2ΔGFAP mice and cultured under mitogenic conditions, they showed signs of DNA damage and premature senescence. Enhanced expression of interferon-stimulated genes (ISGs) represents the most reliable AGS biomarker. Importantly, primary RNase H2ΔGFAP astrocytes displayed significantly increased ISG transcript levels, which we failed to detect in in vivo in brains of RNase H2ΔGFAP mice. Isolated astrocytes primed by DNA damage, including RNase H2-deficiency, exhibited a heightened innate immune response when exposed to bacterial or viral antigens. Taken together, we established a valid cellular AGS model that utilizes the very cell type responsible for disease pathology, the astrocyte, and phenocopies major molecular defects observed in AGS patient cells.


Subject(s)
Astrocytes/immunology , Astrocytes/metabolism , Autoimmune Diseases/etiology , Inflammation/etiology , Nucleic Acids/immunology , Ribonuclease H/deficiency , Animals , Autoimmune Diseases/metabolism , Autoimmune Diseases/pathology , Autoimmune Diseases of the Nervous System/etiology , Autoimmune Diseases of the Nervous System/metabolism , Autoimmune Diseases of the Nervous System/pathology , Biomarkers , Brain/metabolism , Cells, Cultured , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Female , Fluorescent Antibody Technique , Immunohistochemistry , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Knockout , Nervous System Malformations/etiology , Nervous System Malformations/metabolism , Nervous System Malformations/pathology , Phenotype
16.
EBioMedicine ; 29: 92-103, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29463471

ABSTRACT

Chronic hepatitis leads to liver fibrosis and cirrhosis. Cirrhosis is a major cause of worldwide morbidity and mortality. Macrophages play a key role in fibrosis progression and reversal. However, the signals that determine fibrogenic vs fibrolytic macrophage function remain ill defined. We studied the role of interleukin-4 receptor α (IL-4Rα), a potential central switch of macrophage polarization, in liver fibrosis progression and reversal. We demonstrate that inflammatory monocyte infiltration and liver fibrogenesis were suppressed in general IL-4Rα-/- as well as in macrophage-specific IL-4Rα-/- (IL-4RαΔLysM) mice. However, with deletion of IL-4RαΔLysM spontaneous fibrosis reversal was retarded. Results were replicated by pharmacological intervention using IL-4Rα-specific antisense oligonucleotides. Retarded resolution was linked to the loss of M2-type resident macrophages, which secreted MMP-12 through IL-4 and IL-13-mediated phospho-STAT6 activation. We conclude that IL-4Rα signaling regulates macrophage functional polarization in a context-dependent manner. Pharmacological targeting of macrophage polarization therefore requires disease stage-specific treatment strategies. RESEARCH IN CONTEXT: Alternative (M2-type) macrophage activation through IL-4Rα promotes liver inflammation and fibrosis progression but speeds up fibrosis reversal. This demonstrates context dependent, opposing roles of M2-type macrophages. During reversal IL-4Rα induces fibrolytic MMPs, especially MMP-12, through STAT6. Liver-specific antisense oligonucleotides efficiently block IL-4Rα expression and attenuate fibrosis progression.


Subject(s)
Interleukin-4 Receptor alpha Subunit/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Macrophages/metabolism , Signal Transduction , Animals , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Gene Expression , Interleukin-4 Receptor alpha Subunit/genetics , Liver Cirrhosis/drug therapy , Liver Cirrhosis/etiology , Macrophage Activation/immunology , Macrophages/immunology , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Mice , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , RAW 264.7 Cells , STAT6 Transcription Factor/metabolism , Spleen/immunology , Spleen/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
17.
Cell Host Microbe ; 22(3): 354-365.e5, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28826838

ABSTRACT

Arenaviruses such as Lassa virus (LASV) cause hemorrhagic fever. Terminal shock is associated with a systemic cytokine storm, but the mechanisms are ill defined. Here we used HLA-A2-expressing mice infected with a monkey-pathogenic strain of lymphocytic choriomeningitis virus (LCMV-WE), a close relative of LASV, to investigate the pathophysiology of arenavirus hemorrhagic fever (AHF). AHF manifested as pleural effusions, edematous skin swelling, and serum albumin loss, culminating in hypovolemic shock. A characteristic cytokine storm included numerous pro-inflammatory cytokines and nitric oxide (NO) metabolites. Edema formation and terminal shock were abrogated in mice lacking inducible nitric oxide synthase (iNOS), although the cytokine storm persisted. iNOS was upregulated in the liver in a T cell- and interferon-γ (IFN-γ)-dependent fashion. Accordingly, blockade of IFN-γ or depletion of T cells repressed hepatic iNOS and prevented disease despite unchecked high-level viremia. We identify the IFN-γ-iNOS axis as an essential and potentially druggable molecular pathway to AHF-induced shock.


Subject(s)
Hemorrhagic Fevers, Viral/immunology , Interferon-gamma/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/physiology , Nitric Oxide Synthase Type II/immunology , Animals , Disease Models, Animal , Female , Hemorrhagic Fevers, Viral/genetics , Hemorrhagic Fevers, Viral/virology , Humans , Interferon-gamma/genetics , Lymphocytic Choriomeningitis/genetics , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/genetics , Male , Mice , Mice, Inbred C57BL , Nitric Oxide/immunology , Nitric Oxide Synthase Type II/genetics
18.
Glia ; 65(7): 1176-1185, 2017 07.
Article in English | MEDLINE | ID: mdl-28471051

ABSTRACT

Microglia as principle innate immune cells of the central nervous system (CNS) are the first line of defense against invading pathogens. They are capable of sensing infections through diverse receptors, such as Toll-like receptor 4 (TLR4). This receptor is best known for its ability to recognize bacterial lipopolysaccharide (LPS), a causative agent of gram-negative sepsis and septic shock. A putative, naturally occurring antagonist of TLR4 derives from the photosynthetic bacterium Rhodobacter sphaeroides. However, the antagonistic potential of R. sphaeroides LPS (Rs-LPS) is no universal feature, since several studies suggested agonistic rather than antagonistic actions of this molecule depending on the investigated mammalian species. Here we show the agonistic versus antagonistic potential of Rs-LPS in primary mouse microglia. We demonstrate that Rs-LPS efficiently induces the release of cytokines and chemokines, which depends on TLR4, MyD88, and TRIF, but not CD14. Furthermore, Rs-LPS is able to regulate the phagocytic capacity of microglia as agonist, while it antagonizes Re-LPS-induced MHC I expression. Finally, to our knowledge, we are the first to provide in vivo evidence for an agonistic potential of Rs-LPS, as it efficiently triggers the recruitment of peripheral immune cells to the endotoxin-challenged CNS. Together, our results argue for a versatile and complex organization of the microglial TLR4 system, which specifically translates exogenous signals into cellular functions. Importantly, as demonstrated here for microglia, the antagonistic potential of Rs-LPS needs to be considered with caution, as reactions to Rs-LPS not only differ by cell type, but even by function within one cell type.


Subject(s)
Lipopolysaccharides/pharmacology , Microglia/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Animals, Newborn , Brain/cytology , Cells, Cultured , Corpus Striatum/drug effects , Cytokines/metabolism , Dose-Response Relationship, Drug , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/metabolism , Macrophages/drug effects , Macrophages/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Sheath/drug effects , Myelin Sheath/pathology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Phagocytosis/drug effects , Phagocytosis/physiology , Toll-Like Receptor 4/genetics , Up-Regulation/drug effects , Up-Regulation/physiology
20.
Proc Natl Acad Sci U S A ; 114(8): E1480-E1489, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28167776

ABSTRACT

TGF-ß is an anti-inflammatory cytokine whose signaling is negatively controlled by Smad7. Previously, we established a role for Smad7 in the generation of autoreactive T cells; however, the function of Smad7 in dendritic cells (DCs) remains elusive. Here, we demonstrate that DC-specific Smad7 deficiency resulted in elevated expression of the transcription factors Batf3 and IRF8, leading to increased frequencies of CD8+CD103+ DCs in the spleen. Furthermore, Smad7-deficient DCs expressed higher levels of indoleamine 2,3-dioxygenase (IDO), an enzyme associated with tolerance induction. Mice devoid of Smad7 specifically in DCs are resistant to the development of experimental autoimmune encephalomyelitis (EAE) as a result of an increase of protective regulatory T cells (Tregs) and reduction of encephalitogenic effector T cells in the central nervous system. In agreement, inhibition of IDO activity or depletion of Tregs restored disease susceptibility. Intriguingly, when Smad7-deficient DCs also lacked the IFN-γ receptor, the mice regained susceptibility to EAE, demonstrating that IFN-γ signaling in DCs mediates their tolerogenic function. Our data indicate that Smad7 expression governs splenic DC subset differentiation and is critical for the promotion of their efficient function in immunity.


Subject(s)
Autoimmunity/physiology , Dendritic Cells/metabolism , Smad7 Protein/metabolism , Transforming Growth Factor beta/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/physiology , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Immune Tolerance , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon Regulatory Factors/metabolism , Mice , Mice, Inbred C57BL , Signal Transduction/physiology , Spleen/metabolism , T-Lymphocytes, Regulatory/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...