Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Mol Neurobiol ; 57(2): 600-615, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31399955

ABSTRACT

Sporadic Alzheimer's disease (sAD) is the most prevalent neurodegenerative pathology with no effective therapy until date. This disease promotes hippocampal degeneration, which in turn affects multiple cognitive domains and daily life activities. In this study, we hypothesized that long-lasting therapy with mesenchymal stem cells (MSC) would have a restorative effect on the behavioral alterations and cognitive decline typical of sAD, as they have shown neurogenic and immunomodulatory activities. To test this, we chronically injected intravenous human MSC in a sAD rat model induced by the intracerebroventricular injection of streptozotocin (STZ). During the last 2 weeks, we performed open field, Barnes maze, and marble burying tests. STZ-treated rats displayed a poor performance in all behavioral tests. Cell therapy increased exploratory behavior, decreased anxiety, and improved spatial memory and marble burying behavior, the latter being representative of daily life activities. On the hippocampus, we found that STZ promotes neuronal loss in the Cornus Ammoni (CA1) field and decreased neurogenesis in the dentate gyrus. Also, STZ induced a reduction in hippocampal volume and presynaptic protein levels and an exacerbated microgliosis, relevant AD features. The therapy rescued CA1 neurodegeneration but did not reverse the decrease of immature neurons, suggesting that the therapy effect varied among hippocampal neuronal populations. Importantly, cell therapy ameliorated microgliosis and restored hippocampal atrophy and some presynaptic protein levels in the sAD model. These findings, by showing that intravenous injection of human MSC restores behavioral and hippocampal alterations in experimental sAD, support the potential use of MSC therapy for the treatment of neurodegenerative diseases.


Subject(s)
Behavior, Animal , Hippocampus/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Animals , Anxiety/complications , Anxiety/pathology , Anxiety/physiopathology , Exploratory Behavior , Glial Fibrillary Acidic Protein/metabolism , Gliosis/complications , Gliosis/pathology , Male , Maze Learning , Memory , Nerve Tissue Proteins/metabolism , Neurogenesis , Neurons/pathology , Organ Size , Rats, Sprague-Dawley , Spatial Learning , Streptozocin , Synapses/metabolism
2.
Mol Neurobiol ; 57(3): 1473-1483, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31760608

ABSTRACT

Alzheimer's disease (AD) is the main cause of dementia in the elderly. Although activation of brain insulin signaling has been shown to be neuroprotective, to preserve memory in AD models, and appears beneficial in patients, the role of insulin-like growth factor 1 (IGF1) remains incompletely understood. We found reduced active/inactive IGF1 ratio and increased IGF1R expression in postmortem hippocampal tissue from AD patients, suggesting impaired brain IGF1 signaling in AD. Active/inactive IGF-1 ratio was also reduced in the brains of mouse models of AD. We next investigated the possible protective role of IGF1 in AD models. We used a recombinant adenoviral vector, RAd-IGF1, to drive the expression of IGF1 in primary hippocampal neuronal cultures prior to exposure to AßOs, toxins that accumulate in AD brains and have been implicated in early synapse dysfunction and memory impairment. Cultures transduced with RAd-IGF1 showed decreased binding of AßOs to neurons and were protected against AßO-induced neuronal oxidative stress and loss of dendritic spines. Significantly, in vivo transduction with RAd-IGF1 blocked memory impairment caused by intracerebroventricular (i.c.v.) infusion of AßOs in mice. Our results demonstrate altered active IGF1 and IGF1R levels in AD hippocampi, and suggest that boosting brain expression of IGF1 may comprise an approach to prevent neuronal damage and memory loss in AD.


Subject(s)
Adenoviridae/pathogenicity , Alzheimer Disease/metabolism , Hippocampus/metabolism , Insulin-Like Growth Factor I/metabolism , Memory Disorders/prevention & control , Adenoviridae/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/virology , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Female , Humans , Male , Memory/physiology , Memory Disorders/metabolism , Mice , Neurons/metabolism , Synapses/metabolism
3.
Stem Cell Rev Rep ; 16(1): 167-180, 2020 02.
Article in English | MEDLINE | ID: mdl-31760626

ABSTRACT

Spinal cord injury (SCI) is a common pathological condition that leads to permanent or temporal loss of motor and autonomic functions. Kainic acid (KA), an agonist of kainate receptors, a type of ionotropic glutamate receptor, is widely used to induce experimental neurodegeneration models of CNS. Mesenchymal Stem Cells (MSC) therapy applied at the injured nervous tissue have emerged as a promising therapeutic treatment. Here we used a validated SCI experimental model in which an intraparenchymal injection of KA into the C5 segment of rat spinal cord induced an excitotoxic lesion. Three days later, experimental animals were treated with an intracerebroventricular injection of human umbilical cord (hUC) MSC whereas control group only received saline solution. Sensory and motor skills as well as neuronal and glial reaction of both groups were recorded. Differences in motor behavior, neuronal counting and glial responses were observed between hUC-MSC-treated and untreated rats. According to the obtained results, we suggest that hUC-MSC therapy delivered into the fourth ventricle using the intracerebroventricular via can exert a neuroprotective or neurorestorative effect on KA-injected animals.


Subject(s)
Cell- and Tissue-Based Therapy , Mesenchymal Stem Cell Transplantation , Spinal Cord Injuries/therapy , Umbilical Cord/transplantation , Animals , Humans , Infusions, Intraventricular , Kainic Acid/pharmacology , Mesenchymal Stem Cells/cytology , Neuroglia/metabolism , Neuroglia/pathology , Neurons/metabolism , Neurons/pathology , Rats , Spinal Cord/pathology , Spinal Cord/transplantation , Spinal Cord Injuries/pathology , Umbilical Cord/cytology
4.
Stem Cell Rev Rep ; 15(4): 612-617, 2019 08.
Article in English | MEDLINE | ID: mdl-31119513

ABSTRACT

There is a growing interest in the potential of adult stem cells for implementing regenerative medicine in the brain. We assessed the effect of intracerebroventricular (icv) administration of human umbilical cord perivascular cells (HUCPVCs) on spatial memory of senile (27 mo) female rats, using intact senile counterparts as controls. Approximately one third of the animals were injected in the lateral ventricles with a suspension containing 4.8 X 105 HUCPVC in 8 µl per side. The other third received 4.8 X 105 transgenic HUCPVC overexpressing Insulin-like growth factor-1 (IGF-1) and the last third of the rats received no treatment. Spatial memory performance was evaluated using a modified version of the Barnes maze test. In order to evaluate learning ability as well as spatial memory retention, we assessed the time spent (permanence) by animals in goal sector 1 (GS1) and 3 (GS3) when the escape box was removed. Fluorescence microscopy revealed the prescence of Dil-labeled HUCPVC in coronal sections of treated brains. The HUCPVC were located in close contact with the ependymal cells with only a few labeled cells migrating into the brain parenchyma. After treatment with naïve or IGF-1 transgenic HUCPVC, permanence in GS1 and GS3 increased significantly whereas there were no changes in the intact animals. We conclude that HUCPVC injected icv are effective to improve some components of spatial memory in senile rats. The ready accessibility of HUCPVC constitutes a significant incentive to continue the exploration of their therapeutic potential on neurodegenerative diseases.


Subject(s)
Aging , Brain/physiopathology , Cell Transplantation , Memory Disorders/therapy , Spatial Memory , Umbilical Cord , Animals , Female , Humans , Memory Disorders/pathology , Memory Disorders/physiopathology , Rats , Rats, Sprague-Dawley
5.
Behav Brain Res ; 374: 111887, 2019 11 18.
Article in English | MEDLINE | ID: mdl-30951751

ABSTRACT

There is a growing interest in the potential of mesenchymal stem cells (MSCs) for implementing regenerative medicine in the brain as they have shown neurogenic and immunomodulatory activities. We assessed the effect of intracerebroventricular (icv) administration of human bone marrow-derived MSCs (hBM-MSCs) on spatial memory and hippocampal morphology of senile (27 months) female rats, using 3-months-old counterparts as young controls. Half of the animals were injected in the lateral ventricles (LV) with a suspension containing 5 × 105hBM-MSCs in 8 µl per side. The other half received no treatment (senile controls). Spatial memory performance was assessed with a modified version of the Barnes maze test. We employed one probe trial, one day after training in order to evaluate learning ability as well as spatial memory retention. Neuroblast (DCX) and microglial (Iba-1 immunoreactive) markers were also immunohistochemically quantitated in the animals by means of an unbiased stereological approach. In addition, hippocampal presynaptic protein expression was assessed by immunoblotting analysis. After treatment, the senile MSC-treated group showed a significant improvement in spatial memory accuracy and extended permanence in a one- and 3-hole goal sectors as compared with senile controls. The MSC treatment increased the number of neuroblasts in the hippocampal dentate gyrus, reduced the number of reactive microglial cells, and restored presynaptic protein levels as compared to senile controls. We conclude that icv injected hBM-MSCs are effective in improving spatial memory in senile rats and that the strategy improves some functional and morphologic brain features typically altered in aging rats.


Subject(s)
Aging/drug effects , Mesenchymal Stem Cell Transplantation/methods , Spatial Memory/drug effects , Aging/metabolism , Animals , Dentate Gyrus/drug effects , Dentate Gyrus/metabolism , Doublecortin Protein , Female , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Mesenchymal Stem Cells/metabolism , Microglia/drug effects , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Rats , Rats, Sprague-Dawley , Spatial Memory/physiology , Temporal Lobe/drug effects , Temporal Lobe/metabolism
6.
Gene Ther ; 26(10-11): 432-440, 2019 11.
Article in English | MEDLINE | ID: mdl-30770896

ABSTRACT

Biological rejuvenation by partial cell reprogramming is an emerging avenue of research. In this context, regulatable pluripotency gene expression systems are the most widely used at present. We have constructed a regulatable bidirectional adenovector expressing the humanized green fluorescent protein (GFP) and oct4, sox2, klf4, and c-myc genes (known as the Yamanaka genes or OSKM). The OSKM genes are arranged as a bicistronic tandem (hSTEMCCA tandem), which is under the control of a Tet-Off bidirectional promoter that also controls the expression of the gFP gene. Separately, a constitutive cassette expresses the regulatory protein tTA. Vector DNA was transfected in HEK293 Cre cells, which were additionally infected with the helper adenovector H14, unable to package its DNA due to the Cre recombinase produced by the HEK293 Cre cells. The newly generated vector was expanded by six iterated coinfections of the above cells which were lysed at the end of the process and the adenovector purified by ultracentrifugation in a CsCl gradient. The titer of the initial preparation was 1.2 × 1012 physical viral particles/ml. As expected, GFP fluorescence in vector-transduced rat fibroblast cultures declined with the dose of doxycycline (DOX) present in the medium. Immunocytochemical analysis of transduced cells confirmed the expression of the four Yamanaka genes. Additionally, 3 days after vector injection in the hypothalamus of rats, a significant level of fluorescence was observed in the region. Addition of 2 mg/ml DOX to the drinking water reduced the GFP expression. This adenovector constitutes a promising tool for implementing nonintegrative partial cell reprogramming.


Subject(s)
Brain/physiology , Genetic Therapy/methods , Kruppel-Like Transcription Factors/genetics , Octamer Transcription Factor-3/genetics , Proto-Oncogene Proteins c-myc/genetics , Regeneration , SOXB1 Transcription Factors/genetics , Adenoviridae/genetics , Animals , Cells, Cultured , Female , Gene Transfer Techniques , Genetic Vectors/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/metabolism , Octamer Transcription Factor-3/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Rats , Rats, Sprague-Dawley , SOXB1 Transcription Factors/metabolism
7.
J Neural Transm (Vienna) ; 125(12): 1787-1803, 2018 12.
Article in English | MEDLINE | ID: mdl-30244292

ABSTRACT

Sporadic Alzheimer's disease (SAD) is the most common form of dementia; therefore, there is an urgent need for a model that recapitulates the main pathologic hallmarks of this disease. The intracerebroventricular (icv) injection of streptozotocin (icv-STZ) in rats constitutes a promising model, and thus, icv-STZ rats develop insulin-resistant brain state and cognitive impairments. Even though a great piece of studies has hitherto described this system as a model for SAD, further behavioral and morphometric studies are still needed to fully characterize it. In this study, using Sprague Dawley rats, we evaluated short-term effects on behavior and hippocampus morphometry of the icv-STZ injection at two doses: 1 (STZ1) and 3 mg/kg (STZ3). We found that, following icv-STZ injection, STZ3 animals, but not STZ1, exhibited impairments in spatial reference learning and memory (Barnes maze test) and in recognition memory (object recognition test). Furthermore, the results from behavioral and morpho-histochemical data are compatible. STZ3 rats displayed Stratum Radiatum volume reduction and a decreased NeuN immunoreactivity (neuron loss) in hippocampal CA1 region, together with an increased immunoreactivity for microglial (Iba1) and astroglial (GFAP) markers (neuroinflammation). Sholl analysis revealed the vulnerability of hippocampal astrocytes to STZ in CA1 and CA3. Thus, both doses induced a reduction in process length and in the number of main processes, accompanied by a frank decrease in branching complexity. The present study provides important knowledge of this AD rat model. Overall, we found that the only high STZ dose induced severe and acute neurodegenerative lesions, associated with an inflammation process.


Subject(s)
Astrocytes/drug effects , CA1 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/drug effects , Spatial Memory/drug effects , Streptozocin/pharmacology , Animals , Astrocytes/cytology , CA1 Region, Hippocampal/cytology , CA3 Region, Hippocampal/cytology , Cell Shape/drug effects , Injections, Intraventricular , Male , Maze Learning/drug effects , Rats , Rats, Sprague-Dawley
8.
Mol Immunol ; 87: 180-187, 2017 07.
Article in English | MEDLINE | ID: mdl-28501652

ABSTRACT

Thymulin is a thymic peptide possessing anti-inflammatory effects. In order to manipulate thymulin expression in gene therapy studies, we built a bidirectional regulatable two-vector Tet-Off system and the corresponding control system. The experimental two-vector system, ETV, consists of a recombinant adenovector (RAd) harboring an expression cassette centered on a Tet-Off bidirectional promoter flanked by a synthetic gene for thymulin and the gene for humanized Green Fluorescent Protein (hGFP). The second adenovector of this system, RAd-tTA, constitutively expresses the regulatory protein tTA. When cells are co-transduced by the two adenovector components, tTA activates the bidirectional promoter and both transgenes are expressed. In the presence of the antibiotic doxycycline (DOX) transgene expression is deactivated. The control two-vector system, termed CTV, is similar to ETV but only expresses hGFP. In CHO-K1, BHK, and C2C12 cells, ETV and CTV induced a dose-dependent hGFP expression. In CHO-K1 cells, transgene expression was almost completely inhibited by DOX (1mg/ml). After intracerebroventricular injection of ETV in rats, thymulin levels increased significantly in the cerebrospinal fluid and there was high hGFP expression in the ependymal cell layer. When injected intramuscularly the ETV system induced a progressive increase in serum thymulin levels, which were inhibited when DOX was added to the drinking water. We conclude that our regulatable two-adenovector system is an effective molecular tool for implementing short and long-term anti-inflammatory thymulin gene therapy in animal models of acute or chronic inflammation.


Subject(s)
Adenoviridae/genetics , Genetic Vectors/genetics , Inflammation/genetics , Inflammation/therapy , Thymic Factor, Circulating/genetics , Adenoviridae/drug effects , Animals , CHO Cells , Cell Line , Cricetulus , Doxycycline/pharmacology , Female , Genetic Therapy/methods , Green Fluorescent Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Models, Animal , Rats , Rats, Sprague-Dawley , Transgenes/drug effects , Transgenes/genetics
9.
Neurogenesis (Austin) ; 4(1): e1259709, 2017.
Article in English | MEDLINE | ID: mdl-28405590

ABSTRACT

In rats, learning and memory performance decline during normal aging, which is paralleled by a severe reduction of the levels of neurogenesis in the hippocampal dentate gyrus (DG). A promising therapeutic strategy to restore neurogenesis in the hippocampus of old rats and their spatial memory involves the use of insulin-like growth factor-I (IGF-I). The peptide exerts pleiotropic effects in the brain, regulating multiple cellular processes. Thus, 4-week intracerebroventricular (ICV) perfusion of IGF-I significantly restored spatial memory and hippocampal neurogenesis in old male rats. Similar results were achieved by ICV IGF-I gene therapy in aging female rats. Thus, the treatment seemed to increase the number of immature neurons in the DG of 28 mo old rats, which was paralleled by an increase in the accuracy of the animals to remember specific patterns, which is known as pattern separation memory. The DG is thought to be the main hippocampal structure involved in pattern separation memory and there is evidence that the level of neurogenesis in the DG is directly related to pattern separation performance in rodents. Summing up, IGF-I emerges as a promising restorative molecule for increasing hippocampal neurogenesis and memory accuracy in aged individuals and possibly, in neurodegenerative pathologies.

10.
Eur J Neurosci ; 44(4): 2120-8, 2016 08.
Article in English | MEDLINE | ID: mdl-27188415

ABSTRACT

In rats, learning and memory performance decline during aging, which makes this rodent species a suitable model to evaluate therapeutic strategies of potential value for correcting age-related cognitive deficits. Some of these strategies involve neurotrophic factors like insulin-like growth factor-I (IGF-I), a powerful neuroprotective molecule in the brain. Here, we implemented 18-day long intracerebroventricular (ICV) IGF-I gene therapy in 28 months old Sprague-Dawley female rats, and assessed spatial memory performance in the Barnes maze. We also studied hippocampal morphology using an unbiased stereological approach. Adenovectors expressing the gene for rat IGF-I or the reporter DsRed were used. Cerebrospinal fluid (CSF) samples were taken and IGF-I levels determined by radioimmunoassay. At the end of the study, IGF-I levels in the CSF were significantly higher in the experimental group than in the DsRed controls. After treatment, the IGF-I group showed a significant improvement in spatial memory accuracy as compared with DsRed counterparts. In the dentate gyrus (DG) of the hippocampus, the IGF-I group showed a higher number of immature neurons than the DsRed controls. The treatment increased hippocampal astrocyte branching and reduced their number in the hippocampal stratum radiatum. We conclude that the ependymal route is an effective approach to increase CSF levels of IGF-I and that this strategy improves the accuracy of spatial memory in aging rats. The favorable effect of the treatment on DG neurogenesis and astrocyte branching in the stratum radiatum may contribute to improving memory performance in aging rats.


Subject(s)
Astrocytes/metabolism , Hippocampus/metabolism , Insulin-Like Growth Factor I/metabolism , Neurogenesis/physiology , Spatial Memory/physiology , Animals , Cognition/physiology , Cognition Disorders/genetics , Cognition Disorders/metabolism , Cognition Disorders/therapy , Female , Genetic Therapy , Hippocampus/cytology , Insulin-Like Growth Factor I/genetics , Memory Disorders/genetics , Memory Disorders/therapy , Rats, Sprague-Dawley
11.
Curr Pharm Des ; 20(29): 4690-6, 2014.
Article in English | MEDLINE | ID: mdl-24588820

ABSTRACT

Thymulin is a thymic hormone exclusively produced by the epithelial cells of the thymus. After its discovery and initial characterization in the '70s, it was demonstrated that the production and secretion of thymulin are strongly influenced by the neuro-endocrine system. Conversely, a growing body of evidence, to be reviewed here, suggests that thymulin is a hypophysiotropic peptide. Additionally, a substantial body of information pointing to thymulin and a synthetic analog as anti-inflammatory and analgesic peptides in the central nervous system brain and other organs will be also reviewed. In recent years, a synthetic DNA sequence encoding a biologically active analog of thymulin, metFTS, was constructed and cloned in a number of adenovectors. These include bidirectional regulatable Tet-Off vector systems that simultaneously express metFTS and green fluorescent protein and that can be down-regulated reversibly by the addition of the antibiotic doxycycline. A number of recent studies indicate that gene therapy for thymulin may be an effective therapeutic strategy to prevent some of the hormonal and reproductive abnormalities that typically appear in congenitally athymic (nude) mice, used as a suitable model of neuroendocrine and reproductive aging. Summing up, this article briefly reviews the publications on the physiology of the thymulin-neuroendocrine axis and the anti-inflammatory properties of the molecule and its analog. The availability of novel biotechnological tools should boost basic studies on the molecular biology of thymulin and should also allow an assessment of the potential of gene therapy to restore circulating thymulin levels in thymodeficient animal models and eventually, in humans.


Subject(s)
Thymic Factor, Circulating/physiology , Thymic Factor, Circulating/therapeutic use , Humans , Immune System/physiology , Neurosecretory Systems/physiology , Thymus Gland/physiology
12.
Article in English | MEDLINE | ID: mdl-25699290

ABSTRACT

In the central nervous system, cholinergic and dopaminergic (DA) neurons are among the cells most susceptible to the deleterious effects of age. Thus, the basal forebrain cholinergic system is known to undergo moderate neurodegenerative changes during normal aging as well as severe atrophy in Alzheimer's disease (AD). Parkinson's disease (PD), a degeneration of nigro-striatal DA neurons is the most conspicuous reflection of the vulnerability of DA neurons to age. In this context, cell reprogramming offers novel therapeutic possibilities for the treatment of these devastating diseases. In effect, the generation of induced pluripotent stem cells (iPSCs) from somatic cells demonstrated that adult mammalian cells can be reprogrammed to a pluripotent state by the overexpression of a few embryonic transcription factors (TF). This discovery fundamentally widened the research horizon in the fields of disease modeling and regenerative medicine. Although it is possible to re-differentiate iPSCs to specific somatic cell types, the tumorigenic potential of contaminating iPSCs that failed to differentiate, increases the risk for clinical application of somatic cells generated by this procedure. Therefore, reprogramming approaches that bypass the pluripotent stem cell state are being explored. A method called lineage reprogramming has been recently documented. It consists of the direct conversion of one adult cell type into another by transgenic expression of multiple lineage-specific TF or microRNAs. Another approach, termed direct reprogramming, features several advantages such as the use of universal TF system and the ability to generate a rejuvenated multipotent progenitor cell population, able to differentiate into specific cell types in response to a specific differentiation factors. These novel approaches offer a new promise for the treatment of pathologies associated with the loss of specific cell types as for instance, nigral DA neurons (in PD) or basal forebrain cholinergic neurons in the early stages of AD. The above topics are reviewed here.

13.
Neuroimmunomodulation ; 20(5): 256-63, 2013.
Article in English | MEDLINE | ID: mdl-23941809

ABSTRACT

OBJECTIVES: There is clear evidence on the existence of a thymus-pituitary axis which seems to be particularly important during perinatal life. In particular, the thymic peptide thymulin has been shown to be a relevant player in thymus-pituitary communication. Our goal was to explore the effect of thymulin on circulating prolactin (PRL) levels in different animal models. To this end we undertook a series of experiments in rats and mice, implementing adult thymectomy, thymulin immunoneutralization in normal C57BL/6 mice and neonatal thymulin gene therapy in nude mice. METHODS: We assessed the impact of the above manipulations on PRL secretion and lactotrope morphology by measuring serum PRL by radioimmunoassay and by performing morphometric analysis of the lactotropic cell population in the anterior pituitary gland. RESULTS: Adult thymectomy in female rats slightly increased serum PRL, an effect that was partially reversed by thymulin gene therapy. In mice, thymulin immunoneutralization from birth to age 32 days reduced serum PRL both in males and females. Thymulin immunoneutralization induced a significant (p < 0.01) decrease in lactotrope cell density (CD) and volume density (VD) without changes in cell size (CS). Neonatal thymulin gene therapy markedly increased serum thymulin (p < 0.01) and lactotrope CD, CS and VD in nude mice of both sexes. CONCLUSIONS: Our findings suggest a modulatory effect of thymulin on the lactotrope cell population and on serum PRL, particularly during early life.


Subject(s)
Antibodies/therapeutic use , Genetic Therapy/methods , Lactation Disorders/therapy , Thymectomy/methods , Thymic Factor, Circulating/immunology , Animals , Animals, Newborn , Antibodies/pharmacology , Disease Models, Animal , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Lactation Disorders/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Mice, Transgenic , Pituitary Gland/metabolism , Pituitary Gland/pathology , Prolactin/blood , Rats , Rats, Sprague-Dawley , Thymic Factor, Circulating/genetics , Thymic Factor, Circulating/metabolism
14.
Life Sci ; 91(5-6): 166-71, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22781709

ABSTRACT

AIMS: There is clear evidence for the existence of a bi-directional thymus-somatotropic axis and several studies suggest that the thymic peptide thymulin may be involved in this communication. We undertook to assess the impact of serum thymulin immunoneutralization in C57BL/6 mice and that of neonatal thymulin gene therapy (NTGT) in nude mice on body weight (BW) gain and on the histomorphometric profile of the somatotrope population. MAIN METHODS: Immunoneutralization of thymulin was done from postnatal day 1 to 35 by i.p. injections of rabbit anti-thymulin serum (α-FTS) and normal rabbit serum (NRS) in controls. NTGT was implemented in nudes using an adenoviral vector expressing a synthetic gene for thymulin (RAd-FTS). On postnatal day 1, heterozygous (nu/+) and homozygous (nu/nu) pups received a single bilateral i.m. injection either RAd-FTS or RAd-GFP (a control vector expressing green fluorescent protein). BW gain was recorded and at the end of the study the pituitaries were immunostained for growth hormone (GH). Serum GH and thymulin were determined by radioimmunoassay and bioassay, respectively. KEY FINDINGS: Thymulin immunoneutralization induced a significant decrease in BW gain, serum GH and somatotrope cell density as well as an increase in somatotrope cell size. NTGT markedly increased BW gain, serum thymulin (P<0.01) and somatotrope cell and volume density in nu/nu mice. SIGNIFICANCE: Our results suggest that thymulin plays a relevant physiological role on the thymus-somatotropic axis in mice.


Subject(s)
Genetic Therapy/methods , Growth Hormone/blood , Thymic Factor, Circulating/genetics , Thymus Gland/metabolism , Adenoviridae/genetics , Animals , Cell Count , Cell Size , Female , Genetic Vectors , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Rabbits , Radioimmunoassay , Thymic Factor, Circulating/immunology , Thymic Factor, Circulating/metabolism , Weight Gain
15.
Endocrinology ; 153(8): 3922-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22700775

ABSTRACT

Congenitally athymic (nude) female mice show severe ovarian dysgenesis after puberty, which seems to be consequential to a number of neuroendocrine derangements described in these mutants. Thus, considerable evidence suggests that thymulin, a thymic peptide, may be involved in thymus-pituitary communication. In order to clarify the relevance of thymulin for the maturation of the female reproductive system, we assessed at hypothalamic, pituitary, ovarian, and uterine level the preventive action of neonatal thymulin gene therapy (NTGT) on the changes that typically occur after puberty in congenitally athymic female mice. We injected (im) an adenoviral vector harboring a synthetic DNA sequence encoding a biologically active analog of thymulin, methionine-serum thymic factor, in newborn nude mice (which are thymulin deficient) and killed the animals at 70-71 d of age. NTGT in the athymic mice restored the serum thymulin levels. Morphometric analysis revealed that athymic nudes have reduced numbers of brain GnRH neurons and pituitary gonadotropic cells as compared with heterozygous controls. NTGT prevented these changes and also rescued the premature ovarian failure phenotype typically observed in athymic nude mice (marked reduction in the number of antral follicles and corpora lutea, increase in atretic follicles). Serum estrogen, but not progesterone, levels were low in athymic nudes, a reduction that was partially prevented by NTGT. Little to no morphological changes were observed in the endometrium of female nudes. The delay in the age of vaginal opening that occurs in athymic nudes was significantly prevented by NTGT. Our results suggest that thymulin plays a relevant physiologic role in the thymus-hypothalamo-pituitary-gonadal axis.


Subject(s)
Genetic Therapy/methods , Ovary/metabolism , Thymic Factor, Circulating/metabolism , Animals , Animals, Newborn , Estrogens/blood , Female , Mice , Mice, Nude , Ovary/pathology , Progesterone/blood , Thymic Factor, Circulating/genetics
16.
Curr Gene Ther ; 12(2): 116-26, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22348552

ABSTRACT

The discovery in the early 2000's that magnetic nanoparticles (MNPs) complexed to nonviral or viral vectors can, in the presence of an external magnetic field, greatly enhance gene transfer into cells has raised much interest. This technique, called magnetofection, was initially developed mainly to improve gene transfer in cell cultures, a simpler and more easily controllable scenario than in vivo models. These studies provided evidence for some unique capabilities of magnetofection. Progressively, the interest in magnetofection expanded to its application in animal models and led to the association of this technique with another technology, magnetic drug targeting (MDT). This combination offers the possibility to develop more efficient and less invasive gene therapy strategies for a number of major pathologies like cancer, neurodegeneration and myocardial infarction. The goal of MDT is to concentrate MNPs functionalized with therapeutic drugs, in target areas of the body by means of properly focused external magnetic fields. The availability of stable, nontoxic MNP-gene vector complexes now offers the opportunity to develop magnetic gene targeting (MGT), a variant of MDT in which the gene coding for a therapeutic molecule, rather than the molecule itself, is delivered to a therapeutic target area in the body. This article will first outline the principle of magnetofection, subsequently describing the properties of the magnetic fields and MNPs used in this technique. Next, it will review the results achieved by magnetofection in cell cultures. Last, the potential of MGT for implementing minimally invasive gene therapy will be discussed.


Subject(s)
Gene Transfer Techniques , Genetic Therapy/methods , Magnetic Fields , Magnetite Nanoparticles/administration & dosage , Cells, Cultured , Drug Delivery Systems/methods , Drug Delivery Systems/trends , Genetic Therapy/trends , Humans , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Neoplasms/genetics , Neoplasms/therapy , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/therapy
17.
Neuroimmunomodulation ; 18(5): 350-6, 2011.
Article in English | MEDLINE | ID: mdl-21952687

ABSTRACT

Thymulin is a thymic hormone exclusively produced by the thymic epithelial cells. After its discovery and initial characterization in the 1970s, it was demonstrated that thymulin production and secretion is strongly influenced by the neuroendocrine system. Conversely, a growing core of information, to be reviewed here, points to thymulin as a hypophysiotropic peptide. Additionally, thymulin was shown to possess anti-inflammatory and analgesic properties in the brain. In recent years, a synthetic DNA sequence coding for a biologically active analog of thymulin, metFTS, was constructed and cloned in different adenoviral vectors. These include bidirectional regulatable Tet-Off vector systems that simultaneously express metFTS and green fluorescent protein and that can be downregulated reversibly by the addition of the antibiotic doxycycline. A number of recent studies suggest that thymulin gene therapy may be a suitable therapeutic strategy to prevent some of the endocrine and reproductive alterations that typically appear in congenitally athymic (nude) mice, taken as a suitable model of neuroendocrine and reproductive aging. The present article briefly reviews the literature on the physiology of the thymulin-pituitary axis as well as on the new molecular tools available to exploit the therapeutic potential of thymulin.


Subject(s)
Aging/genetics , Genetic Therapy , Pituitary Gland/physiology , Thymic Factor, Circulating/genetics , Animals , Genetic Vectors , Green Fluorescent Proteins/genetics , Humans , Mice , Mice, Nude , Models, Animal , Thymic Factor, Circulating/metabolism
18.
Histol Histopathol ; 26(4): 471-9, 2011 04.
Article in English | MEDLINE | ID: mdl-21360440

ABSTRACT

The integrity of the thymus during early life is necessary for a proper maturation of the neuroendocrine system, including the adrenal axis. The thymic metallopeptide thymulin seems to be a central physiologic mediator of thymus-pituitary communication. Furthermore, neonatal thymulin gene therapy has been shown to prevent the typical alterations of gonadotrophic cell number and morphology and serum gonadotropin levels in nude female mice. In the present study we assessed the impact of athymia and the effect of neonatal thymulin gene therapy on the corticotropic cell population in nude mice. The effect of thymulin administration to adult nudes on their hypothalamic content of corticotropin-releasing hormone (CRH) and the adrenal content of corticosterone was also determined. We used an adenoviral vector expressing a synthetic gene for the thymic peptide thymulin (metFTS) termed RAd-FTS. On postnatal day 1 or 2, heterozygous (nu/+) and homozygous (nu/nu) pups of both sexes received a single bilateral i.m. injection of RAd-FTS or RAd-GFP, a control vector. On postnatal day 71, mice were bled and sacrificed, and their pituitaries were immediately dissected, fixed and immunostained for corticotropin. Morphometry was performed by means of an image-analysis system. The following parameters were calculated: volume density (VD: Σ cell area/reference area), cell density (CD: number of cells/reference area), and cell surface (CS: expressed in µm²). Serum thymulin levels were measured by a bioassay, and CRH as well as corticosterone were determined by IRMA and RIA, respectively. Neonatal thymulin gene therapy in the athymic mice restored their serum thymulin levels and increased corticotrope CD, VD and CS in both control and athymic mice. Athymic mice showed only a marginal reduction in corticotrope CD, VD and CS. In these mutants hypothalamic CRH content was slightly increased, whereas adrenal corticosterone tended to be lower. Thymulin administration to adult mice tended to reverse these changes. Our results suggest a possible modulating effect of thymulin on the corticotrope population and the adrenal gland, confirming the existence of a bidirectional thymus-pituitary-adrenal axis.


Subject(s)
Corticotrophs/cytology , Genetic Therapy/methods , Thymic Factor, Circulating/genetics , Adenoviridae/genetics , Adrenal Glands/cytology , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Animals , Animals, Newborn , Cell Count , Cell Size , Corticosterone/metabolism , Corticotrophs/drug effects , Corticotrophs/metabolism , Corticotropin-Releasing Hormone/metabolism , Female , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Hypothalamus/cytology , Hypothalamus/drug effects , Hypothalamus/metabolism , Image Processing, Computer-Assisted , Male , Mice , Mice, Nude , Pituitary Gland/cytology , Pituitary Gland/drug effects , Pituitary Gland/metabolism , Thymic Factor, Circulating/metabolism , Thymic Factor, Circulating/pharmacology
19.
Cells Tissues Organs ; 194(1): 67-75, 2011.
Article in English | MEDLINE | ID: mdl-21212643

ABSTRACT

There is evidence of the existence of a bidirectional relationship between the thymus gland and the thyroid axis. Since the thymic peptide thymulin possesses hypophysiotropic activity, we undertook the task of assessing the histomorphometric changes induced by thymulin deficiency on the thyrotrope population of normal mice and the action of neonatal thymulin gene therapy on the thyrotropin (TSH)-cells of nude mice. C57BL/6 mice were subjected to immunoneutralization of circulating thymulin from postnatal day 1 to the end of the study (postnatal day 32) by intraperitoneal injections of rabbit anti-factor thymulin serum (α-FTS) and normal rabbit serum in controls. Also, neonatal thymulin gene therapy was implemented in athymic nude mice using an adenoviral vector expressing a gene for thymulin (RAd-FTS). On postnatal day 1, heterozygous (nu/+) and homozygous (nu/nu) pups received a single bilateral intramuscular (i.m.) injection of either RAd-FTS or RAd-GFP (the latter being the control vector). The pituitaries were immunostained for TSH. Thymulin immunoneutralization severely reduced serum thymulin (p < 0.01). We detected a significant (p < 0.05) decrease in cell size (CS) and volume density (VD) with a nonsignificant decrease in cell density (CD) in C57BL/6 in both males and females. A single neonatal i.m. injection of RAd-FTS markedly increased the circulating levels of serum thymulin in the athymic mice and increased the CD (p < 0.05), CS (p < 0.01) and VD (p < 0.01) of the thyrotrope population in nu/nu mice. Thyroid histology was not affected. Our results suggest a possible modulating effect of thymulin on the thyrotrope population.


Subject(s)
Thymic Factor, Circulating/genetics , Thyrotrophs/cytology , Animals , Cell Count , Female , Genetic Therapy , Genetic Vectors/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Nude , Thymic Factor, Circulating/deficiency , Thymus Gland/anatomy & histology , Thymus Gland/metabolism , Thyrotrophs/metabolism
20.
Ann N Y Acad Sci ; 1153: 98-106, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19236333

ABSTRACT

Thymulin is a thymic hormone exclusively produced by the thymic epithelial cells. It consists of a nonapeptide component coupled to the ion zinc, which confers biological activity to the molecule. After its discovery in the early 1970s, thymulin was characterized as a thymic hormone involved in several aspects of intrathymic and extrathymic T cell differentiation. Subsequently, it was demonstrated that thymulin production and secretion is strongly influenced by the neuroendocrine system. Conversely, a growing core of information, to be reviewed here, points to thymulin as a hypophysotropic peptide. In recent years, interest has arisen in the potential use of thymulin as a therapeutic agent. Thymulin was shown to possess anti-inflammatory and analgesic properties in the brain. Furthermore, an adenoviral vector harboring a synthetic gene for thymulin, stereotaxically injected in the rat brain, achieved a much longer expression than the adenovirally mediated expression in the brain of other genes, thus suggesting that an anti-inflammatory activity of thymulin prevents the immune system from destroying virus-transduced brain cells. Other studies suggest that thymulin gene therapy may also be a suitable therapeutic strategy to prevent some of the endocrine and metabolic alterations that typically appear in thymus-deficient animal models. The present article briefly reviews the literature on the physiology, molecular biology, and therapeutic potential of thymulin.


Subject(s)
Genetic Therapy , Neurosecretory Systems/physiology , Peptides/genetics , Peptides/therapeutic use , Thymic Factor, Circulating/genetics , Thymic Factor, Circulating/therapeutic use , Thymus Gland/metabolism , Amino Acid Sequence , Animals , Base Sequence , Homeostasis , Humans , Molecular Sequence Data , Peptides/chemistry , Thymic Factor, Circulating/biosynthesis , Thymic Factor, Circulating/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...