Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gen Comp Endocrinol ; 308: 113769, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33794274

ABSTRACT

Cortisol is the final product of the hypothalamic-pituitary-interrenal (HPI) axis and acts as a gluco- and mineralo-corticoid in fish. Long-term elevations of cortisol have been linked to reduced growth in fishes, but the mechanism(s) and relative sensitivities of species are still unclear. We carried out experiments to examine the relative effects of cortisol on growth and gill NKA activity in two salmonids: Atlantic salmon (Salmo salar) and brook trout (Salvelinus fontinalis). Treatment with intraperitoneal cortisol implants for 30 days resulted in reduced growth in both species, but with greater sensitivity to cortisol in brook trout. Gill NKA activity was strongly upregulated by cortisol in Atlantic salmon, and weakly upregulated in brook trout but with no statistically significant effect. Cortisol treatment resulted in reduced plasma levels of insulin-like growth factor I and increased plasma growth hormone levels in Atlantic salmon. Our results demonstrate that there are species differences in the sensitivity of growth and osmoregulation to cortisol, even among species in the same family (Salmonidae).


Subject(s)
Osmoregulation , Salmo salar , Animals , Gills , Hydrocortisone/pharmacology , Trout
2.
Mol Cell Endocrinol ; 518: 110989, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32835784

ABSTRACT

The growth hormone (Gh)/insulin-like growth-factor (Igf)/Igf binding protein (Igfbp) system regulates growth and osmoregulation in salmonid fishes, but how this system interacts with other endocrine systems is largely unknown. Given the well-documented consequences of mounting a glucocorticoid stress response on growth, we hypothesized that cortisol inhibits anabolic processes by modulating the expression of hepatic igfbp mRNAs. Atlantic salmon (Salmo salar) parr were implanted intraperitoneally with cortisol implants (0, 10, and 40 µg g-1 body weight) and sampled after 3 or 14 days. Cortisol elicited a dose-dependent reduction in specific growth rate (SGR) after 14 days. While plasma Gh and Igf1 levels were unchanged, hepatic igf1 mRNA was diminished and hepatic igfbp1b1 and -1b2 were stimulated by the high cortisol dose. Plasma Igf1 was positively correlated with SGR at 14 days. Hepatic gh receptor (ghr), igfbp1a, -2a, -2b1, and -2b2 levels were not impacted by cortisol. Muscle igf2, but not igf1 or ghr, levels were stimulated at 3 days by the high cortisol dose. As both cortisol and the Gh/Igf axis promote seawater (SW) tolerance, and particular igfbps respond to SW exposure, we also assessed whether cortisol coordinates the expression of branchial igfbps and genes associated with ion transport. Cortisol stimulated branchial igfbp5b2 levels in parallel with Na+/K+-ATPase (NKA) activity and nka-α1b, Na+/K+/2Cl--cotransporter 1 (nkcc1), and cystic fibrosis transmembrane regulator 1 (cftr1) mRNA levels. The collective results indicate that cortisol modulates the growth of juvenile salmon via the regulation of hepatic igfbp1s whereas no clear links between cortisol and branchial igfbps previously shown to be salinity-responsive could be established.


Subject(s)
Hydrocortisone/administration & dosage , Insulin-Like Growth Factor Binding Protein 1/genetics , Insulin-Like Growth Factor Binding Protein 2/genetics , Insulin-Like Growth Factor Binding Protein 5/genetics , Liver/metabolism , Salmo salar/growth & development , Animals , Dose-Response Relationship, Drug , Drug Implants/chemistry , Gene Expression Regulation, Developmental/drug effects , Growth Hormone/blood , Hydrocortisone/pharmacology , Injections, Intraperitoneal , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Liver/growth & development , Salmo salar/genetics , Seawater/chemistry
3.
J Therm Biol ; 89: 102559, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32364992

ABSTRACT

As stream temperatures increase due to factors such as heated runoff from impervious surfaces, deforestation, and climate change, fish species adapted to cold water streams are forced to move to more suitable habitat, acclimate or adapt to increased thermal regimes, or die. To estimate the potential for adaptation, a (within individual) repeatable metric of thermal tolerance is imperative. Critical thermal maximum (CTmax) is a dynamic test that is widely used to measure thermal tolerance across many taxa and has been used in fishes for decades, but its repeatability in most species is unknown. CTmax tests increase water temperature steadily over time until loss of equilibrium (LOE) is achieved. To determine if CTmax is a consistent metric within individual fish, we measured CTmax on the same lab-held individually-marked adult brook trout Salvelinus fontinalis at three different times (August & September 2016, September 2017). We found that CTmax is a repeatable trait (Repeatability ±â€¯S.E.: 0.48 ±â€¯0.14). CTmax of individuals males was consistent over time, but the CTmax of females increased slightly over time. This result indicates that CTmax is a robust, repeatable estimate of thermal tolerance in a cold-water adapted fish.


Subject(s)
Thermotolerance , Trout/physiology , Animals , Reproducibility of Results , Swimming/physiology
4.
J Fish Biol ; 92(6): 1832-1848, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29603209

ABSTRACT

Lipid content forms the most important energy reserve in anadromous fish and can limit survival, migration and reproductive success. A fat meter was evaluated and compared with a traditional extractive method of measuring available lipid for migrating American shad Alosa sapidissima in the Connecticut River, U.S.A. The fat meter gives rapid (<10 s) and non-lethal lipid measurements, whereas traditional methods require lethal sampling that is both time consuming and expensive. The fat-meter readings had a strong relationship to traditional lipid extractions for 60 fish, 30 whole body (R2 = 0·72) and 30 fillet only (R2 = 0·81). Additional validation showed that fat-meter readings captured the gradual decrease of lipid in individual fish over time, were not affected by removal of gonads or scales and were stable for fish exposed to water or air for 24 h after death. These experiments indicate that the fat meter can be used as a reliable tool for future A. sapidissima energetic studies, allowing for larger sample sizes and non-lethal sampling.


Subject(s)
Fishes , Lipids/analysis , Animal Migration , Animals , Female , Gonads/chemistry , Male , Reproduction , Rivers , United States
5.
J Fish Biol ; 87(5): 1129-46, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26399385

ABSTRACT

Field studies were conducted to determine levels of gill aluminium as an index of acidification effects on migrating Atlantic salmon Salmo salar smolts in the north-eastern U.S.A. along mainstem river migration corridors in several major river basins. Smolts emigrating from the Connecticut River, where most (but not all) tributaries were well buffered, had low or undetectable levels of gill aluminium and high gill Na(+) /K(+) -ATPase (NKA) activity. In contrast, smolts emigrating from the upper Merrimack River basin where most tributaries are characterized by low pH and high inorganic aluminium had consistently elevated gill aluminium and lower gill NKA activity, which may explain the low adult return rates of S. salar stocked into the upper Merrimack catchment. In the Sheepscot, Narraguagus and Penobscot Rivers in Maine, river and year-specific effects on gill aluminium were detected that appeared to be driven by underlying geology and high spring discharge. The results indicate that episodic acidification is affecting S. salar smolts in poorly buffered streams in New England and may help explain variation in S. salar survival and abundance among rivers and among years, with implications for the conservation and recovery of S. salar in the north-eastern U.S.A. These results suggest that the physiological condition of outmigrating smolts may serve as a large-scale sentinel of landscape-level recovery of atmospheric pollution in this and other parts of the North Atlantic region.


Subject(s)
Acid Rain/toxicity , Aluminum/analysis , Gills/drug effects , Salmo salar , Sodium-Potassium-Exchanging ATPase/analysis , Animal Migration , Animals , Gills/chemistry , Maine , New England , Rivers/chemistry , Salmon , Seasons , United States
6.
J Fish Biol ; 85(4): 1005-22, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25263185

ABSTRACT

The timing of downstream migration and detection rates of hatchery-reared Atlantic salmon Salmo salar smolts and stream-reared smolts (stocked 2 years earlier as fry) were examined in the Connecticut River (U.S.A.) using passive integrated transponder (PIT) tags implanted into fish and then detected at a downstream fish bypass collection facility at Turners Falls, MA (river length 192 km). In two successive years, hatchery-reared smolts were released in mid-April and early May at two sites: the West River (river length 241 km) or the Passumpsic (river length 450 km). Hatchery-reared smolts released higher in the catchment arrived 7 to 14 days later and had significantly lower detection rates than smolts stocked lower in the catchment. Hatchery-reared smolts released 3 weeks apart at the same location were detected downstream at similar times, indicating that early-release smolts had a lower average speed after release and longer residence time. The size and gill Na(+) /K(+) -ATPase (NKA) activity of smolts at the time of release were significantly greater for detected fish (those that survived and migrated) than for those that were not detected. Stream-reared pre-smolts (>11·5 cm) from four tributaries (length 261-551 km) were tagged in autumn and detected during smolt migration the following spring. Stream-reared smolts higher in the catchment arrived later and had significantly lower detection rates. The results indicate that both hatchery and stream-reared smolts from the upper catchment will arrive at the mouth of the river later and experience higher overall mortality than fish from lower reaches, and that both size and gill NKA activity are related to survival during downstream migration.


Subject(s)
Animal Migration , Salmo salar/physiology , Animal Identification Systems , Animals , Aquaculture , Gills/enzymology , Rivers , Seasons , Sodium-Potassium-Exchanging ATPase/metabolism , United States
7.
J Exp Biol ; 212(Pt 24): 3994-4001, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19946077

ABSTRACT

Gill Na(+)/K(+)-ATPase (NKA) in teleost fishes is involved in ion regulation in both freshwater and seawater. We have developed and validated rabbit polyclonal antibodies specific to the NKA alpha1a and alpha1b protein isoforms of Atlantic salmon (Salmo salar Linnaeus), and used western blots and immunohistochemistry to characterize their size, abundance and localization. The relative molecular mass of NKA alpha1a is slightly less than that for NKA beta1b. The abundance of gill NKA alpha1a was high in freshwater and became nearly undetectable after seawater acclimation. NKA alpha1b was present in small amounts in freshwater and increased 13-fold after seawater acclimation. Both NKA isoforms were detected only in chloride cells. NKA alpha1a was located in both filamental and lamellar chloride cells in freshwater, whereas in seawater it was present only as a faint background in filamental chloride cells. In freshwater, NKA alpha1b was found in a small number of filamental chloride cells, and after seawater acclimation it was found in all chloride cells on the filament and lamellae. Double simultaneous immunofluorescence indicated that NKA alpha1a and alpha1b are located in different chloride cells in freshwater. In many chloride cells in seawater, NKA alpha1b was present in greater amounts in the subapical region than elsewhere in the cell. The combined patterns in abundance and immunolocalization of these two isoforms can explain the salinity-related changes in total NKA and chloride cell abundance. The results indicate that there is a freshwater and a seawater isoform of NKA alpha-subunit in the gills of Atlantic salmon and that they are present in distinct chloride cells.


Subject(s)
Chlorides/metabolism , Fresh Water , Gills/cytology , Gills/enzymology , Salmo salar/metabolism , Seawater , Sodium-Potassium-Exchanging ATPase/metabolism , Acclimatization , Animals , Blotting, Western , Cell Size , Isoenzymes/metabolism , Microscopy, Confocal , Protein Transport , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...