Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Clin EEG Neurosci ; 54(2): 203-212, 2023 Mar.
Article in English | MEDLINE | ID: mdl-33203220

ABSTRACT

The goal of these studies was to use quantitative (q)EEG techniques on data from children with Angelman syndrome (AS) using spectral power analysis, and to evaluate this as a potential biomarker and quantitative method to evaluate therapeutics. Although characteristic patterns are evident in visual inspection, using qEEG techniques has the potential to provide quantitative evidence of treatment efficacy. We first assessed spectral power from baseline EEG recordings collected from children with AS compared to age-matched neurotypical controls, which corroborated the previously reported finding of increased total power driven by elevated delta power in children with AS. We then retrospectively analyzed data collected during a clinical trial evaluating the safety and tolerability of minocycline (3 mg/kg/d) to compare pretreatment recordings from children with AS (4-12 years of age) to EEG activity at the end of treatment and following washout for EEG spectral power and epileptiform events. At baseline and during minocycline treatment, the AS subjects demonstrated increased delta power; however, following washout from minocycline treatment the AS subjects had significantly reduced EEG spectral power and epileptiform activity. Our findings support the use of qEEG analysis in evaluating AS and suggest that this technique may be useful to evaluate therapeutic efficacy in AS. Normalizing EEG power in AS therefore may become an important metric in screening therapeutics to gauge overall efficacy. As therapeutics transition from preclinical to clinical studies, it is vital to establish outcome measures that can quantitatively evaluate putative treatments for AS and neurological disorders with distinctive EEG patterns.


Subject(s)
Angelman Syndrome , Child , Humans , Angelman Syndrome/diagnosis , Angelman Syndrome/drug therapy , Electroencephalography , Minocycline/therapeutic use , Retrospective Studies , Treatment Outcome
2.
Ann Clin Transl Neurol ; 8(11): 2211-2221, 2021 11.
Article in English | MEDLINE | ID: mdl-34647437

ABSTRACT

Intracerebral hemorrhage (ICH) remains a common and debilitating form of stroke. This neurological emergency must be diagnosed and treated rapidly yet effectively. In this article, we review the medical, surgical, repair, and regenerative treatment options for managing ICH. Topics of focus include the management of blood pressure, intracranial pressure, coagulopathy, and intraventricular hemorrhage, as well as the role of surgery, regeneration, rehabilitation, and secondary prevention. Results of various phase II and III trials are incorporated. In summary, ICH patients should undergo rapid evaluation with neuroimaging, and early interventions should include systolic blood pressure control in the range of 140 mmHg, correction of coagulopathy if indicated, and assessment for surgical intervention. ICH patients should be managed in dedicated neurosurgical intensive care or stroke units where continuous monitoring of neurological status and evaluation for neurological deterioration is rapidly possible. Extravasation of hematoma may be helpful in patients with intraventricular extension of ICH. The goal of care is to reduce mortality and enable multimodal rehabilitative therapy.


Subject(s)
Cerebral Hemorrhage/therapy , Hematologic Agents , Neurological Rehabilitation , Neurosurgical Procedures , Secondary Prevention , Stem Cell Transplantation , Cerebral Hemorrhage/drug therapy , Cerebral Hemorrhage/surgery , Humans
3.
Front Neurol ; 12: 691631, 2021.
Article in English | MEDLINE | ID: mdl-34354664

ABSTRACT

After subarachnoid hemorrhage (SAH), up to 95% of surviving patients suffer from post-SAH syndrome, which includes cognitive deficits with impaired memory, executive functions, and emotional disturbances. Although these long-term cognitive deficits are thought to result from damage to temporomesial-hippocampal areas, the underlying mechanisms remain unknown. To fill this gap in knowledge, we performed a systematic RNA sequencing screen of the hippocampus in a mouse model of SAH. SAH was induced by perforation of the circle of Willis in mice. Four days later, hippocampal RNA was obtained from SAH and control (sham perforation) mice. Next-generation RNA sequencing was used to determine differentially expressed genes in the whole bilateral hippocampi remote from the SAH bleeding site. Functional analyses and clustering tools were used to define molecular pathways. Differential gene expression analysis detected 642 upregulated and 398 downregulated genes (false discovery rate <0.10) in SAH compared to Control group. Functional analyses using IPA suite, Gene Ontology terms, REACTOME pathways, and MsigDB Hallmark gene set collections revealed suppression of oligodendrocytes/myelin related genes, and overexpression of genes related to complement system along with genes associated with innate and adaptive immunity, and extracellular matrix reorganization. Interferon regulatory factors, TGF-ß1, and BMP were identified as major orchestrating elements in the hippocampal tissue response. The MEME-Suite identified binding motifs of Krüppel-like factors, zinc finger transcription factors, and interferon regulatory factors as overrepresented DNA promoter motifs. This study provides the first systematic gene and pathway database of the hippocampal response after SAH. Our findings suggest that damage of the entorhinal cortex by subarachnoid blood may remotely trigger specific hippocampal responses, which include suppression of oligodendrocyte function. Identification of these novel pathways may allow for development of new therapeutic approaches for post-SAH cognitive deficits.

4.
J Neural Eng ; 18(4)2021 08 19.
Article in English | MEDLINE | ID: mdl-34330120

ABSTRACT

Mild traumatic brain injuries (mTBIs) are the most common type of brain injury. Timely diagnosis of mTBI is crucial in making 'go/no-go' decision in order to prevent repeated injury, avoid strenuous activities which may prolong recovery, and assure capabilities of high-level performance of the subject. If undiagnosed, mTBI may lead to various short- and long-term abnormalities, which include, but are not limited to impaired cognitive function, fatigue, depression, irritability, and headaches. Existing screening and diagnostic tools to detect acute andearly-stagemTBIs have insufficient sensitivity and specificity. This results in uncertainty in clinical decision-making regarding diagnosis and returning to activity or requiring further medical treatment. Therefore, it is important to identify relevant physiological biomarkers that can be integrated into a mutually complementary set and provide a combination of data modalities for improved on-site diagnostic sensitivity of mTBI. In recent years, the processing power, signal fidelity, and the number of recording channels and modalities of wearable healthcare devices have improved tremendously and generated an enormous amount of data. During the same period, there have been incredible advances in machine learning tools and data processing methodologies. These achievements are enabling clinicians and engineers to develop and implement multiparametric high-precision diagnostic tools for mTBI. In this review, we first assess clinical challenges in the diagnosis of acute mTBI, and then consider recording modalities and hardware implementation of various sensing technologies used to assess physiological biomarkers that may be related to mTBI. Finally, we discuss the state of the art in machine learning-based detection of mTBI and consider how a more diverse list of quantitative physiological biomarker features may improve current data-driven approaches in providing mTBI patients timely diagnosis and treatment.


Subject(s)
Brain Concussion , Brain Injuries , Wearable Electronic Devices , Humans , Machine Learning , Sensitivity and Specificity
5.
Front Neurosci ; 13: 541, 2019.
Article in English | MEDLINE | ID: mdl-31191233

ABSTRACT

We observed fine fibrin deposition along the paravascular spaces in naive animals, which increased dramatically following subarachnoid hemorrhage (SAH). Following SAH, fibrin deposits in the areas remote from the hemorrhage. Traditionally it is thought that fibrinogen enters subarachnoid space through damaged blood brain barrier. However, deposition of fibrin remotely from hemorrhage suggests that fibrinogen chains Aα, Bß, and γ can originate in the brain. Here we demonstrate in vivo and in vitro that astroglia and neurons are capable of expression of fibrinogen chains. SAH in mice was induced by the filament perforation of the circle of Willis. Four days after SAH animals were anesthetized, transcardially perfused and fixed. Whole brain was processed for immunofluorescent (IF) analysis of fibrin deposition on the brain surface or in brains slices processed for fibrinogen chains Aα, Bß, γ immunohistochemical detection. Normal human astrocytes were grown media to confluency and stimulated with NOC-18 (100 µM), TNF-α (100 nM), ATP-γ-S (100 µM) for 24 h. Culture was fixed and washed/permeabilized with 0.1% Triton and processed for IF. Four days following SAH fibrinogen chains Aα IF associated with glia limitans and superficial brain layers increased 3.2 and 2.5 times (p < 0.05 and p < 0.01) on the ventral and dorsal brain surfaces respectively; fibrinogen chains Bß increased by 3 times (p < 0.01) on the dorsal surface and fibrinogen chain γ increased by 3 times (p < 0.01) on the ventral surface compared to sham animals. Human cultured astrocytes and neurons constitutively expressed all three fibrinogen chains. Their expression changed differentially when exposed for 24 h to biologically significant stimuli: TNFα, NO or ATP. Western blot and RT-qPCR confirmed presence of the products of the appropriate molecular weight and respective mRNA. We demonstrate for the first time that mouse and human astrocytes and neurons express fibrinogen chains suggesting potential presence of endogenous to the brain fibrinogen chains differentially changing to biologically significant stimuli. SAH is followed by increased expression of fibrinogen chains associated with glia limitans remote from the hemorrhage. We conclude that brain astrocytes and neurons are capable of production of fibrinogen chains, which may be involved in various normal and pathological processes.

6.
Brain Sci ; 7(10)2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28934119

ABSTRACT

Excitation of intrinsic neurons of cerebellar fastigial nucleus (FN) renders brain tolerant to local and global ischemia. This effect reaches a maximum 72 h after the stimulation and lasts over 10 days. Comparable neuroprotection is observed following sublethal global brain ischemia, a phenomenon known as preconditioning. We hypothesized that FN may participate in the mechanisms of ischemic preconditioning as a part of the intrinsic neuroprotective mechanism. To explore potential significance of FN neurons in brain ischemic tolerance we lesioned intrinsic FN neurons with excitotoxin ibotenic acid five days before exposure to 20 min four-vessel occlusion (4-VO) global ischemia while analyzing neuronal damage in Cornu Ammoni area 1 (CA1) hippocampal area one week later. In FN-lesioned animals, loss of CA1 cells was higher by 22% compared to control (phosphate buffered saline (PBS)-injected) animals. Moreover, lesion of FN neurons increased morbidity following global ischemia by 50%. Ablation of FN neurons also reversed salvaging effects of five-minute ischemic preconditioning on CA1 neurons and morbidity, while ablation of cerebellar dentate nucleus neurons did not change effect of ischemic preconditioning. We conclude that FN is an important part of intrinsic neuroprotective system, which participates in ischemic preconditioning and may participate in naturally occurring neuroprotection, such as "diving response".

7.
Epilepsia ; 56(4): 636-46, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25752454

ABSTRACT

OBJECTIVE: Hyperactivation of the mechanistic target of rapamycin (mTOR; also known as mammalian target of rapamycin) pathway has been demonstrated in human cortical dysplasia (CD) as well as in animal models of epilepsy. Although inhibition of mTOR signaling early in epileptogenesis suppressed epileptiform activity in the neuron subset-specific Pten knockout (NS-Pten KO) mouse model of CD, the effects of mTOR inhibition after epilepsy is fully established were not previously examined in this model. Here, we investigated whether mTOR inhibition suppresses epileptiform activity and other neuropathological correlates in adult NS-Pten KO mice with severe and well-established epilepsy. METHODS: The progression of epileptiform activity, mTOR pathway dysregulation, and associated neuropathology with age in NS-Pten KO mice were evaluated using video-electroencephalography (EEG) recordings, Western blotting, and immunohistochemistry. A cohort of NS-Pten KO mice was treated with the mTOR inhibitor rapamycin (10 mg/kg i.p., 5 days/week) starting at postnatal week 9 and video-EEG monitored for epileptiform activity. Western blotting and immunohistochemistry were performed to evaluate the effects of rapamycin on the associated pathology. RESULTS: Epileptiform activity worsened with age in NS-Pten KO mice, with parallel increases in the extent of hippocampal mTOR complex 1 and 2 (mTORC1 and mTORC2, respectively) dysregulation and progressive astrogliosis and microgliosis. Rapamycin treatment suppressed epileptiform activity, improved baseline EEG activity, and increased survival in severely epileptic NS-Pten KO mice. At the molecular level, rapamycin treatment was associated with a reduction in both mTORC1 and mTORC2 signaling and decreased astrogliosis and microgliosis. SIGNIFICANCE: These findings reveal a wide temporal window for successful therapeutic intervention with rapamycin in the NS-Pten KO mouse model, and they support mTOR inhibition as a candidate therapy for established, late-stage epilepsy associated with CD and genetic dysregulation of the mTOR pathway.


Subject(s)
Disease Models, Animal , Epilepsy/metabolism , Malformations of Cortical Development/metabolism , PTEN Phosphohydrolase/deficiency , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , Animals , Epilepsy/drug therapy , Female , Male , Malformations of Cortical Development/drug therapy , Mice , Mice, Knockout , Sirolimus/pharmacology , Sirolimus/therapeutic use
8.
Mol Med ; 20: 601-11, 2015 Mar 11.
Article in English | MEDLINE | ID: mdl-25299421

ABSTRACT

Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune-brain communication, including the impact of peripheral inflammation on brain region-specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1ß, IL-6 and other cytokines and brain region-specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches.


Subject(s)
Brain/drug effects , Gene Expression Regulation/drug effects , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Acetylcholinesterase/genetics , Animals , Brain/metabolism , Calcium-Binding Proteins/genetics , Cytokines/blood , Cytokines/genetics , GPI-Linked Proteins/genetics , Glial Fibrillary Acidic Protein , Inflammation/blood , Male , Mice, Inbred BALB C , Microfilament Proteins/genetics , Nerve Growth Factors/genetics , Nerve Tissue Proteins/genetics , RNA, Messenger/metabolism , Receptors, Muscarinic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...