Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
2.
J Neurol ; 270(12): 6071-6080, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37665382

ABSTRACT

OBJECTIVE: There is a lack of reliable tools used to predict functional recovery in unresponsive patients following a severe brain injury. The objective of the study is to evaluate the prognostic utility of resting-state functional magnetic resonance imaging for predicting good neurologic recovery in unresponsive patients with severe brain injury in the intensive-care unit. METHODS: Each patient underwent a 5.5-min resting-state scan and ten resting-state networks were extracted via independent component analysis. The Glasgow Outcome Scale was used to classify patients into good and poor outcome groups. The Nearest Centroid classifier used each patient's ten resting-state network values to predict best neurologic outcome within 6 months post-injury. RESULTS: Of the 25 patients enrolled (mean age = 43.68, range = [19-69]; GCS ≤ 9; 6 females), 10 had good and 15 had poor outcome. The classifier correctly and confidently predicted 8/10 patients with good and 12/15 patients with poor outcome (mean = 0.793, CI = [0.700, 0.886], Z = 2.843, p = 0.002). The prediction performance was largely determined by three visual (medial: Z = 3.11, p = 0.002; occipital pole: Z = 2.44, p = 0.015; lateral: Z = 2.85, p = 0.004) and the left frontoparietal network (Z = 2.179, p = 0.029). DISCUSSION: Our approach correctly identified good functional outcome with higher sensitivity (80%) than traditional prognostic measures. By revealing preserved networks in the absence of discernible behavioral signs, functional connectivity may aid in the prognostic process and affect the outcome of discussions surrounding withdrawal of life-sustaining measures.


Subject(s)
Brain Injuries , Magnetic Resonance Imaging , Female , Humans , Adult , Magnetic Resonance Imaging/methods , Brain Injuries/diagnostic imaging , Prognosis , Occipital Lobe , Brain/diagnostic imaging
3.
3D Print Med ; 6(1): 3, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32026130

ABSTRACT

An anthropomorphic phantom is a radiologically accurate, tissue realistic model of the human body that can be used for research into innovative imaging and interventional techniques, education simulation and calibration of medical imaging equipment. Currently available CT phantoms are appropriate tools for calibration of medical imaging equipment but have major disadvantages for research and educational simulation. They are expensive, lacking the realistic appearance and characteristics of anatomical organs when visualized during X-ray based image scanning. In addition, CT phantoms are not modular hence users are not able to remove specific organs from inside the phantom for research or training purposes. 3D printing technology has evolved and can be used to print anatomically accurate abdominal organs for a modular anthropomorphic mannequin to address limitations of existing phantoms. In this study, CT images from a clinical patient were used to 3D print the following organ shells: liver, kidneys, spleen, and large and small intestines. In addition, fatty tissue was made using modelling beeswax and musculature was modeled using liquid urethane rubber to match the radiological density of real tissue in CT Hounsfield Units at 120kVp. Similarly, all 3D printed organ shells were filled with an agar-based solution to mimic the radiological density of real tissue in CT Hounsfield Units at 120kVp. The mannequin has scope for applications in various aspects of medical imaging and education, allowing us to address key areas of clinical importance without the need for scanning patients.

SELECTION OF CITATIONS
SEARCH DETAIL