Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Neuroeng Rehabil ; 21(1): 94, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840208

ABSTRACT

BACKGROUND: Many individuals with neurodegenerative (NDD) and immune-mediated inflammatory disorders (IMID) experience debilitating fatigue. Currently, assessments of fatigue rely on patient reported outcomes (PROs), which are subjective and prone to recall biases. Wearable devices, however, provide objective and reliable estimates of gait, an essential component of health, and may present objective evidence of fatigue. This study explored the relationships between gait characteristics derived from an inertial measurement unit (IMU) and patient-reported fatigue in the IDEA-FAST feasibility study. METHODS: Participants with IMIDs and NDDs (Parkinson's disease (PD), Huntington's disease (HD), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), primary Sjogren's syndrome (PSS), and inflammatory bowel disease (IBD)) wore a lower-back IMU continuously for up to 10 days at home. Concurrently, participants completed PROs (physical fatigue (PF) and mental fatigue (MF)) up to four times a day. Macro (volume, variability, pattern, and acceleration vector magnitude) and micro (pace, rhythm, variability, asymmetry, and postural control) gait characteristics were extracted from the accelerometer data. The associations of these measures with the PROs were evaluated using a generalised linear mixed-effects model (GLMM) and binary classification with machine learning. RESULTS: Data were recorded from 72 participants: PD = 13, HD = 9, RA = 12, SLE = 9, PSS = 14, IBD = 15. For the GLMM, the variability of the non-walking bouts length (in seconds) with PF returned the highest conditional R2, 0.165, and with MF the highest marginal R2, 0.0018. For the machine learning classifiers, the highest accuracy of the current analysis was returned by the micro gait characteristics with an intrasubject cross validation method and MF as 56.90% (precision = 43.9%, recall = 51.4%). Overall, the acceleration vector magnitude, bout length variation, postural control, and gait rhythm were the most interesting characteristics for future analysis. CONCLUSIONS: Counterintuitively, the outcomes indicate that there is a weak relationship between typical gait measures and abnormal fatigue. However, factors such as the COVID-19 pandemic may have impacted gait behaviours. Therefore, further investigations with a larger cohort are required to fully understand the relationship between gait and abnormal fatigue.


Subject(s)
Fatigue , Feasibility Studies , Gait , Mental Fatigue , Neurodegenerative Diseases , Walking , Humans , Male , Female , Middle Aged , Fatigue/diagnosis , Fatigue/physiopathology , Fatigue/etiology , Walking/physiology , Aged , Mental Fatigue/physiopathology , Mental Fatigue/diagnosis , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/physiopathology , Neurodegenerative Diseases/diagnosis , Gait/physiology , Wearable Electronic Devices , Immune System Diseases/complications , Immune System Diseases/diagnosis , Adult , Accelerometry/instrumentation , Accelerometry/methods
2.
Article in English | MEDLINE | ID: mdl-38083383

ABSTRACT

Current assessments of fatigue and sleepiness rely on patient reported outcomes (PROs), which are subjective and prone to recall bias. The current study investigated the use of gait variability in the "real world" to identify patient fatigue and daytime sleepiness. Inertial measurement units were worn on the lower backs of 159 participants (117 with six different immune and neurodegenerative disorders and 42 healthy controls) for up to 20 days, whom completed regular PROs. To address walking bouts that were short and sparse, four feature groups were considered: sequence-independent variability (SIV), sequence-dependant variability (SDV), padded SDV (PSDV), and typical gait variability (TGV) measures. These gait variability measures were extracted from step, stride, stance, and swing time, step length, and step velocity. These different approaches were compared using correlations and four machine learning classifiers to separate low/high fatigue and sleepiness.Most balanced accuracies were above 50%, the highest was 57.04% from TGV measures. The strongest correlation was 0.262 from an SDV feature against sleepiness. Overall, TGV measures had lower correlations and classification accuracies.Identifying fatigue or sleepiness from gait variability is extremely complex and requires more investigation with a larger data set, but these measures have shown performances that could contribute to a larger feature set.Clinical relevance- Gait variability has been repeatedly used to assess fatigue in the lab. The current study, however, explores gait variability for fatigue and daytime sleepiness in real-world scenarios with multiple gait-impacted disorders.


Subject(s)
Disorders of Excessive Somnolence , Fatigue , Gait , Immune System Diseases , Neurodegenerative Diseases , Sleepiness , Humans , Disorders of Excessive Somnolence/diagnosis , Disorders of Excessive Somnolence/etiology , Disorders of Excessive Somnolence/physiopathology , Fatigue/diagnosis , Fatigue/etiology , Fatigue/physiopathology , Gait/physiology , Immune System Diseases/complications , Immune System Diseases/physiopathology , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/physiopathology , Sleepiness/physiology
3.
Sensors (Basel) ; 23(21)2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37960674

ABSTRACT

Accurate and reliable measurement of real-world walking activity is clinically relevant, particularly for people with mobility difficulties. Insights on walking can help understand mobility function, disease progression, and fall risks. People living in long-term residential care environments have heterogeneous and often pathological walking patterns, making it difficult for conventional algorithms paired with wearable sensors to detect their walking activity. We designed two walking bout detection algorithms for people living in long-term residential care. Both algorithms used thresholds on the magnitude of acceleration from a 3-axis accelerometer on the lower back to classify data as "walking" or "non-walking". One algorithm had generic thresholds, whereas the other used personalized thresholds. To validate and evaluate the algorithms, we compared the classifications of walking/non-walking from our algorithms to the real-time research assistant annotated labels and the classification output from an algorithm validated on a healthy population. Both the generic and personalized algorithms had acceptable accuracy (0.83 and 0.82, respectively). The personalized algorithm showed the highest specificity (0.84) of all tested algorithms, meaning it was the best suited to determine input data for gait characteristic extraction. The developed algorithms were almost 60% quicker than the previously developed algorithms, suggesting they are adaptable for real-time processing.


Subject(s)
Gait , Walking , Humans , Algorithms , Acceleration , Accelerometry
4.
Front Physiol ; 13: 968185, 2022.
Article in English | MEDLINE | ID: mdl-36452041

ABSTRACT

Problems with fatigue and sleep are highly prevalent in patients with chronic diseases and often rated among the most disabling symptoms, impairing their activities of daily living and the health-related quality of life (HRQoL). Currently, they are evaluated primarily via Patient Reported Outcomes (PROs), which can suffer from recall biases and have limited sensitivity to temporal variations. Objective measurements from wearable sensors allow to reliably quantify disease state, changes in the HRQoL, and evaluate therapeutic outcomes. This work investigates the feasibility of capturing continuous physiological signals from an electrocardiography-based wearable device for remote monitoring of fatigue and sleep and quantifies the relationship of objective digital measures to self-reported fatigue and sleep disturbances. 136 individuals were followed for a total of 1,297 recording days in a longitudinal multi-site study conducted in free-living settings and registered with the German Clinical Trial Registry (DRKS00021693). Participants comprised healthy individuals (N = 39) and patients with neurodegenerative disorders (NDD, N = 31) and immune mediated inflammatory diseases (IMID, N = 66). Objective physiological measures correlated with fatigue and sleep PROs, while demonstrating reasonable signal quality. Furthermore, analysis of heart rate recovery estimated during activities of daily living showed significant differences between healthy and patient groups. This work underscores the promise and sensitivity of novel digital measures from multimodal sensor time-series to differentiate chronic patients from healthy individuals and monitor their HRQoL. The presented work provides clinicians with realistic insights of continuous at home patient monitoring and its practical value in quantitative assessment of fatigue and sleep, an area of unmet need.

6.
Front Aging Neurosci ; 14: 808518, 2022.
Article in English | MEDLINE | ID: mdl-35391750

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disease. PD misdiagnosis can occur in early stages. Gait impairment in PD is typical and is linked with an increased fall risk and poorer quality of life. Applying machine learning (ML) models to real-world gait has the potential to be more sensitive to classify PD compared to laboratory data. Real-world gait yields multiple walking bouts (WBs), and selecting the optimal method to aggregate the data (e.g., different WB durations) is essential as this may influence classification performance. The objective of this study was to investigate the impact of environment (laboratory vs. real world) and data aggregation on ML performance for optimizing sensitivity of PD classification. Gait assessment was performed on 47 people with PD (age: 68 ± 9 years) and 52 controls [Healthy controls (HCs), age: 70 ± 7 years]. In the laboratory, participants walked at their normal pace for 2 min, while in the real world, participants were assessed over 7 days. In both environments, 14 gait characteristics were evaluated from one tri-axial accelerometer attached to the lower back. The ability of individual gait characteristics to differentiate PD from HC was evaluated using the Area Under the Curve (AUC). ML models (i.e., support vector machine, random forest, and ensemble models) applied to real-world gait showed better classification performance compared to laboratory data. Real-world gait characteristics aggregated over longer WBs (WB 30-60 s, WB > 60 s, WB > 120 s) resulted in superior discriminative performance (PD vs. HC) compared to laboratory gait characteristics (0.51 ≤ AUC ≤ 0.77). Real-world gait speed showed the highest AUC of 0.77. Overall, random forest trained on 14 gait characteristics aggregated over WBs > 60 s gave better performance (F1 score = 77.20 ± 5.51%) as compared to laboratory results (F1 Score = 68.75 ± 12.80%). Findings from this study suggest that the choice of environment and data aggregation are important to achieve maximum discrimination performance and have direct impact on ML performance for PD classification. This study highlights the importance of a harmonized approach to data analysis in order to drive future implementation and clinical use. Clinical Trial Registration: [09/H0906/82].

7.
Sensors (Basel) ; 20(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297395

ABSTRACT

Falls are the leading cause of mortality, morbidity and poor quality of life in older adults with or without neurological conditions. Applying machine learning (ML) models to gait analysis outcomes offers the opportunity to identify individuals at risk of future falls. The aim of this study was to determine the effect of different data pre-processing methods on the performance of ML models to classify neurological patients who have fallen from those who have not for future fall risk assessment. Gait was assessed using wearables in clinic while walking 20 m at a self-selected comfortable pace in 349 (159 fallers, 190 non-fallers) neurological patients. Six different ML models were trained on data pre-processed with three techniques such as standardisation, principal component analysis (PCA) and path signature method. Fallers walked more slowly, with shorter strides and longer stride duration compared to non-fallers. Overall, model accuracy ranged between 48% and 98% with 43-99% sensitivity and 48-98% specificity. A random forest (RF) classifier trained on data pre-processed with the path signature method gave optimal classification accuracy of 98% with 99% sensitivity and 98% specificity. Data pre-processing directly influences the accuracy of ML models for the accurate classification of fallers. Using gait analysis with trained ML models can act as a tool for the proactive assessment of fall risk and support clinical decision-making.


Subject(s)
Gait Analysis , Nervous System Diseases , Wearable Electronic Devices , Accidental Falls , Aged , Female , Gait , Humans , Male , Quality of Life , Walking
8.
Sensors (Basel) ; 20(18)2020 Sep 19.
Article in English | MEDLINE | ID: mdl-32961799

ABSTRACT

Parkinson's disease (PD) is a common neurodegenerative disorder resulting in a range of mobility deficits affecting gait, balance and turning. In this paper, we present: (i) the development and validation of an algorithm to detect turns during gait; (ii) a method to extract turn characteristics; and (iii) the classification of PD using turn characteristics. Thirty-seven people with PD and 56 controls performed 180-degree turns during an intermittent walking task. Inertial measurement units were attached to the head, neck, lower back and ankles. A turning detection algorithm was developed and validated by two raters using video data. Spatiotemporal and signal-based characteristics were extracted and used for PD classification. There was excellent absolute agreement between the rater and the algorithm for identifying turn start and end (ICC ≥ 0.99). Classification modeling (partial least square discriminant analysis (PLS-DA)) gave the best accuracy of 97.85% when trained on upper body and ankle data. Balanced sensitivity (97%) and specificity (96.43%) were achieved using turning characteristics from the neck, lower back and ankles. Turning characteristics, in particular angular velocity, duration, number of steps, jerk and root mean square distinguished mild-moderate PD from controls accurately and warrant future examination as a marker of mobility impairment and fall risk in PD.


Subject(s)
Gait Analysis , Gait Disorders, Neurologic , Parkinson Disease , Aged , Algorithms , Female , Gait Disorders, Neurologic/diagnosis , Humans , Male , Middle Aged , Parkinson Disease/diagnosis , Walking
9.
IEEE Open J Eng Med Biol ; 1: 65-73, 2020.
Article in English | MEDLINE | ID: mdl-35402938

ABSTRACT

Objective: Gait may be a useful biomarker that can be objectively measured with wearable technology to classify Parkinson's disease (PD). This study aims to: (i) comprehensively quantify a battery of commonly utilized gait digital characteristics (spatiotemporal and signal-based), and (ii) identify the best discriminative characteristics for the optimal classification of PD. Methods: Six partial least square discriminant analysis (PLS-DA) models were trained on subsets of 210 characteristics measured in 142 subjects (81 people with PD, 61 controls (CL)). Results: Models accuracy ranged between 70.42-88.73% (AUC: 78.4-94.5%) with a sensitivity of 72.84-90.12% and a specificity of 60.3-86.89%. Signal-based digital gait characteristics independently gave 87.32% accuracy. The most influential characteristics in the classification models were related to root mean square values, power spectral density, step velocity and length, gait regularity and age. Conclusions: This study highlights the importance of signal-based gait characteristics in the development of tools to help classify PD in the early stages of the disease.

10.
Sensors (Basel) ; 19(24)2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31817393

ABSTRACT

Early diagnosis of Parkinson's diseases (PD) is challenging; applying machine learning (ML) models to gait characteristics may support the classification process. Comparing performance of ML models used in various studies can be problematic due to different walking protocols and gait assessment systems. The objective of this study was to compare the impact of walking protocols and gait assessment systems on the performance of a support vector machine (SVM) and random forest (RF) for classification of PD. 93 PD and 103 controls performed two walking protocols at their normal pace: (i) four times along a 10 m walkway (intermittent walk-IW), (ii) walking for 2 minutes on a 25 m oval circuit (continuous walk-CW). 14 gait characteristics were extracted from two different systems (an instrumented walkway-GAITRite; and an accelerometer attached at the lower back-Axivity). SVM and RF were trained on normalized data (accounting for step velocity, gender, age and BMI) and evaluated using 10-fold cross validation with area under the curve (AUC). Overall performance was higher for both systems during CW compared to IW. SVM performed better than RF. With SVM, during CW Axivity significantly outperformed GAITRite (AUC: 87.83 ± 7.81% vs. 80.49 ± 9.85%); during IW systems performed similarly. These findings suggest that choice of testing protocol and sensing system may have a direct impact on ML PD classification results and highlight the need for standardization for wide scale implementation.


Subject(s)
Accelerometry/methods , Gait/physiology , Machine Learning , Parkinson Disease/physiopathology , Walking/physiology , Aged , Area Under Curve , Case-Control Studies , Female , Humans , Male , Middle Aged , ROC Curve , Wearable Electronic Devices
11.
Sci Rep ; 9(1): 17269, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754175

ABSTRACT

Parkinson's disease (PD) is the second most common neurodegenerative disease; gait impairments are typical and are associated with increased fall risk and poor quality of life. Gait is potentially a useful biomarker to help discriminate PD at an early stage, however the optimal characteristics and combination are unclear. In this study, we used machine learning (ML) techniques to determine the optimal combination of gait characteristics to discriminate people with PD and healthy controls (HC). 303 participants (119 PD, 184 HC) walked continuously around a circuit for 2-minutes at a self-paced walk. Gait was quantified using an instrumented mat (GAITRite) from which 16 gait characteristics were derived and assessed. Gait characteristics were selected using different ML approaches to determine the optimal method (random forest with information gain and recursive features elimination (RFE) technique with support vector machine (SVM) and logistic regression). Five clinical gait characteristics were identified with RFE-SVM (mean step velocity, mean step length, step length variability, mean step width, and step width variability) that accurately classified PD. Model accuracy for classification of early PD ranged between 73-97% with 63-100% sensitivity and 79-94% specificity. In conclusion, we identified a subset of gait characteristics for accurate early classification of PD. These findings pave the way for a better understanding of the utility of ML techniques to support informed clinical decision-making.


Subject(s)
Gait Analysis/methods , Parkinson Disease/classification , Aged , Aged, 80 and over , Biomarkers , Female , Gait/physiology , Humans , Longitudinal Studies , Machine Learning , Male , Middle Aged , Sensitivity and Specificity , Support Vector Machine , Walking/physiology
12.
Brain Sci ; 9(2)2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30736374

ABSTRACT

Quantifying gait and postural control adds valuable information that aids in understanding neurological conditions where motor symptoms predominate and cause considerable functional impairment. Disease-specific clinical scales exist; however, they are often susceptible to subjectivity, and can lack sensitivity when identifying subtle gait and postural impairments in prodromal cohorts and longitudinally to document disease progression. Numerous devices are available to objectively quantify a range of measurement outcomes pertaining to gait and postural control; however, efforts are required to standardise and harmonise approaches that are specific to the neurological condition and clinical assessment. Tools are urgently needed that address a number of unmet needs in neurological practice. Namely, these include timely and accurate diagnosis; disease stratification; risk prediction; tracking disease progression; and decision making for intervention optimisation and maximising therapeutic response (such as medication selection, disease staging, and targeted support). Using some recent examples of research across a range of relevant neurological conditions-including Parkinson's disease, ataxia, and dementia-we will illustrate evidence that supports progress against these unmet clinical needs. We summarise the novel 'big data' approaches that utilise data mining and machine learning techniques to improve disease classification and risk prediction, and conclude with recommendations for future direction.

13.
Sci Rep ; 8(1): 16349, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30397282

ABSTRACT

Considering the challenge of population ageing and the substantial health problem among the elderly population from falls, the purpose of this study was to verify whether it is possible to distinguish accurately between older fallers and non-fallers, based on data from wearable inertial sensors collected during a specially designed test battery. A comprehensive but practical test battery using 5 wearable inertial sensors for multifactorial fall risk assessment was designed. This was followed by an experimental study on 196 community-dwelling Korean older women, categorized as fallers (N1 = 82) and non-fallers (N2 = 114) based on prior history of falls. Six machine learning models (logistic regression, naïve bayes, decision tree, random forest, boosted tree and support vector machine) were proposed for faller classification. Results indicated that compared with non-fallers, fallers performed significantly worse on the test battery. In addition, the application of sensor data and support vector machine for faller classification achieved an overall accuracy of 89.4% with 92.7% sensitivity and 84.9% specificity. These findings suggest that wearable inertial sensor based systems show promise for elderly fall risk assessment, which could be implemented in clinical practice to identify "at-risk" individuals reliably to promote proactive fall prevention.


Subject(s)
Accidental Falls , Electric Power Supplies , Independent Living , Monitoring, Physiologic/instrumentation , Wearable Electronic Devices , Aged , Female , Humans , Male , Retrospective Studies , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...