Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
ACS Omega ; 9(28): 31148-31158, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39035878

ABSTRACT

Diabetes mellitus (DM) is a chronic disorder and still a challenge throughout the world, and therefore the search for safe and effective inhibitors for α-amylase and α-glucosidase is increasing day by day. In this work, we try to carry out the synthesis, modification, and computer-aided results of and biological research on thiadiazole-based Schiff base derivatives and evaluate their in vitro α-amylase and α-glucosidase inhibitory potential (1-15). In the current series, all of the synthesized analogues were shown to have potential inhibitory effects on targeted enzymes. The IC50 values for α-amylase values ranged from 20.10 ± 0.40 to 0.80 ± 0.05 µM, compared with the standard drug acarbose having an IC50 value of 10.30 ± 0.20 µM, while for α-glucosidase, the IC50 values ranged from 20.10 ± 0.50 to 1.20 ± 0.10 µM, compared to acarbose with an IC50 value of 9.80 ± 0.20 µM. For better understanding, a SAR investigation was undertaken. In this series, nine scaffolds (1, 2, 3, 6, 9, 10, 11, 13, and 15) were more active than the reference drug and the docking parameter RMSD values for α-glucosidase and α-amylase were 1.766, 2.7746, 1.6025, 2.2112, 3.5860, 2.3360, 1.6178, 2.0254, and 2.0797 and 2.6020, 1.9509, 3.1642, 1.7547, 2.2130, 1.4221, and 1.1087, respectively. The toxicity of the selected analogues was calculated by using the OSIRIS tool, and the TPSA values were found to be lower than 140 to represent the drug-like properties; those from Molinspiration were studied as well. The following properties were studied and found to have better biological properties. The remaining analogues (4, 5, 7, 8, 12, and 14) were also identified as potential inhibitors of both enzymes, but they were less active than the reference due to the substituents attached to the aromatic parts. The structures of synthesized compounds were confirmed through different spectroscopic analyses.

2.
Article in English | MEDLINE | ID: mdl-38996406

ABSTRACT

The current study involves the synthesis of Schiff bases based on 1,2,4-triazoles skeleton and assessing their α-amylase and α-glucosidase profile. Furthermore, the precise structures of the synthesized derivatives were elucidated using various spectroscopic methods such as 1H-NMR, 13C-NMR and HREI-MS. Using glimepiride as the reference standard, the in vitro α-glucosidase and α-amylase inhibitory activities of the synthesized compounds were evaluated in order to determine their potential anti-diabetic properties. All analogues showed varied range of inhibitory activity having IC50 values ranging from 17.09 ± 0.72 to 45.34 ± 0.03 µM (α-amylase) and 16.35 ± 0.42 to 42.31 ± 0.09 µM (α-glucosidase), respectively. Specifically, the compounds 1, 7 and 8 were found to be significantly active with IC50 values of 17.09 ± 0.72, 19.73 ± 0.42, and 23.01 ± 0.04 µM (against α-amylase) and 16.35 ± 0.42, 18.55 ± 0.26, and 20.07 ± 0.02 µM (against α-glucosidase) respectively. The obtained results were compared with the Glimepiride reference drug having IC50 values of 13.02 ± 0.11 µM (for α-glucosidase) and 15.04 ± 0.02 µM (for α-amylase), respectively. The structure-activity relationship (SAR) studies were conducted based on differences in substituent patterns at varying position of aryl rings A and B may cause to alter the inhibitory activities of both α-amylase and α-glucosidase enzymes. Additionally, the molecular docking study was carried out to explore the binding interactions possessed by most active analogues with the active sites of targeted α-amylase and α-glucosidase enzymes.

3.
Article in English | MEDLINE | ID: mdl-39007228

ABSTRACT

New series of benzimidazole incorporating piperazine moieties in single molecular framework has been reported. The structures of the synthesized derivatives were assigned by 1H-NMR, 13C-NMR, and HR-MS techniques. The hybrid derivatives were evaluated for their acetylcholinesterase and butyrylcholinesterase inhibition effect. All the synthesized analogs showed good to moderate inhibitory effect ranging from IC50 value 0.20 ± 0.01 µM to 0.50 ± 0.10 µM for acetylcholinesterase and from IC50 value 0.25 ± 0.01 µM to 0.70 ± 0.10 µM for butyrylcholinesterase except one that showed least potency with IC50 value 1.05 ± 0.1 µM and 1.20 ± 0.1 µM. The differences in inhibitory potential of synthesized compounds were due to the nature and position of substitution attached to the main ring. Additionally, molecular docking study was carried out for most active in order to explore the binding interactions established by ligand (active compounds) with the active residues of targeted AChE & BuChE enzyme.

4.
Int J Biol Macromol ; 273(Pt 1): 132964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852719

ABSTRACT

There is a growing interest in developing highly viscous lipid foods using plant protein and polysaccharide gum-based emulsion technology. However, gaps remain in understanding the rheological, microstructural, and digestive properties of plant proteins like soybean protein isolate (SPI) in combination with various gums. This study investigates how combining SPI and peach gum (PG) affects rheology and lipolysis of oil-in-water (O/W) emulsions containing 20 wt% soybean oil. Emulsions with varying SPI and PG compositions including SPI-PG single and SPI/PG mixed droplet systems were prepared. Heating induced alterations in viscosity (e.g., SPI-PG from 14.88 to 90.27 Pa·s and SPI/PG from 9.66 to 85.32 Pa·s) and microstructure revealing aggregate formation at oil-water interface. The viscosity decreased significantly from the oral to intestinal phase (SPI-PG: 28.10 to 0.19 Pa·s, SPI/PG: 21.27 to 0.10 Pa·s). These changes affected lipid digestion, notably in SPI-PG and SPI/PG emulsions where a compact interface hindered lipolysis during digestion. Interestingly, free fatty acid (FFA) release during small intestinal phase followed a different order: SPI (82.51 %) > SPI-PG (70.77 %) > SPI/PG (63.60 %) > PG (56.09 %). This study provides insights into creating highly viscous O/W spreads with improved rheology, stability, and delayed lipid digestion, offering potential benefits in food product formulation.


Subject(s)
Emulsions , Microspheres , Plant Gums , Rheology , Soybean Proteins , Water , Emulsions/chemistry , Soybean Proteins/chemistry , Water/chemistry , Plant Gums/chemistry , Viscosity , Soybean Oil/chemistry , Lipolysis
5.
RSC Adv ; 14(21): 15085-15094, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38720970

ABSTRACT

Water contamination due to organic pollutants is a challenging issue around the globe, and several attempts have been made to deal with this issue. Out of which, the semiconductor-based photocatalytic process had gained much attention and proved to be an efficient, easy, and economical process for the removal of organic dyes from aqueous solutions. For this purpose, the iron oxide-zirconium dioxide nanocomposite (Fe2O3-ZrO2 NC) was prepared via a simple mechanochemical process using a mortar and pestle, followed by a calcination process at 300, 600, and 900 °C. Different physicochemical analyses were carried out in order to investigate the successful synthesis of Fe2O3-ZrO2 NC and the effect of temperature on the crystallinity, surface area, pore size, phase composition, sample morphology, and particle/crystallite size. The Fe2O3-ZrO2 NCs were subjected to a photocatalytic test under solar light irradiation against fluorescein dye in an aqueous medium, and the photocatalytic performance was examined under the influence of calcination temperatures, pH, catalyst dose, and initial concentration. The stability of the Fe2O3-ZrO2 NCs was also checked by recycling them for five reuse cycles.

6.
Pharmaceuticals (Basel) ; 17(4)2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38675373

ABSTRACT

Benzimidazole-based pyrrole/piperidine analogs (1-26) were synthesized and then screened for their acetylcholinesterase and butyrylcholinesterase activities. All the analogs showed good to moderate cholinesterase activities. Synthesized compounds (1-13) were screened in cholinesterase enzyme inhibition assays and showed AChE activities in the range of IC50 = 19.44 ± 0.60 µM to 36.05 ± 0.4 µM against allanzanthane (IC50 = 16.11 ± 0.33 µM) and galantamine (IC50 = 19.34 ± 0.62 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 21.57 ± 0.61 µM to 39.55 ± 0.03 µM as compared with standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Similarly, synthesized compounds (14-26) were also subjected to tests to determine their in vitro AChE inhibitory activities, and the results obtained corroborated that all the compounds showed varied activities in the range of IC50 = 22.07 ± 0.13 to 42.01 ± 0.02 µM as compared to allanzanthane (IC50 = 20.01 ± 0.12 µM) and galantamine (IC50 = 18.05 ± 0.31 µM) and varied BuChE inhibitory activities, with IC50 values in the range of 26.32 ± 0.13 to 47.03 ± 0.15 µM as compared to standard allanzanthane (IC50 = 18.14 ± 0.05 µM) and galantamine (IC50 = 21.45 ± 0.21 µM). Binding interactions of the most potent analogs were confirmed through molecular docking studies. The active analogs 2, 4, 10 and 13 established numerous interactions with the active sites of targeted enzymes, with docking scores of -10.50, -9.3, -7.73 and -7.8 for AChE and -8.97, -8.2, -8.20 and -7.6 for BuChE, respectively.

7.
ACS Omega ; 9(7): 7480-7490, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405480

ABSTRACT

Diabetes is an emerging disorder in the world and is caused due to the imbalance of insulin production as well as serious effects on the body. In search of a better treatment for diabetes, we designed a novel class of 1,3,4-thiadiazole-bearing Schiff base analogues and assessed them for the α-glucosidase enzyme. In the series (1-12), compounds are synthesized and 3 analogues showed excellent inhibitory activity against α-glucosidase enzymes in the range of IC50 values of 18.10 ± 0.20 to 1.10 ± 0.10 µM. In this series, analogues 4, 8, and 9 show remarkable inhibition profile IC50 2.20 ± 0.10, 1.10 ± 0.10, and 1.30 ± 0.10 µM by using acarbose as a standard, whose IC50 is 11.50 ± 0.30 µM. The structure of the synthesized compounds was confirmed through various spectroscopic techniques, such as NMR and HREI-MS. Additionally, molecular docking, pharmacokinetics, cytotoxic evaluation, and density functional theory study were performed to investigate their behavior.

8.
Future Med Chem ; 16(4): 335-348, 2024 02.
Article in English | MEDLINE | ID: mdl-38314616

ABSTRACT

Aim: Recently, thiadiazole-containing drugs have gained greater clinical relevance and are being explored for the development of new antidiabetic, antiurease and antimicrobial agents that target drug resistance. Methods & results: The authors disclose the synthesis of N-(5-[4-(trifluoromethyl)phenyl]-1,3,4-thiadiazol-2-yl)methanimine derivatives starting from 4-(trifluoromethyl)benzoic acid. All of the synthesized derivatives were evaluated for their biological potential in order to investigate the inhibitory activity against antidiabetic, antiurease and antibacterial profiles. Compounds 1, 2 and 9 showed excellent inhibitory activities due to the hydrogen bonding presence of -OH, -F and -CF3 substitutions attached with the phenyl ring. Conclusion: The present study provides potent antidiabetic, antiurease and antimicrobial agents that can be further optimized to discover novel antidiabetic, antiurease drugs.


Subject(s)
Anti-Infective Agents , Thiadiazoles , Molecular Docking Simulation , Structure-Activity Relationship , Schiff Bases/pharmacology , Thiadiazoles/pharmacology , Anti-Infective Agents/pharmacology , Hypoglycemic Agents/pharmacology , Molecular Structure
9.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38139777

ABSTRACT

In the present work, a concise library of benzothiazole-derived pyrazoline-based thiazole (1-17) was designed and synthesized by employing a multistep reaction strategy. The newly synthesized compounds were screened for their α-glucosidase and urease inhibitory activities. The scaffolds (1-17) were characterized using a combination of several spectroscopic techniques, including FT-IR, 1H-NMR, 13C-NMR, and EI-MS. The majority of the synthesized compounds demonstrated a notable potency against α-glucosidase and urease enzymes. These analogues disclosed varying degrees of α-glucosidase and urease inhibitory activities, with their IC50 values ranging from 2.50 to 17.50 µM (α-glucosidase) and 14.30 to 41.50 (urease). Compounds 6, 7, 14, and 12, with IC50 values of 2.50, 3.20, 3.40, and 3.50 µM as compared to standard acarbose (IC50 = 5.30 µM), while the same compounds showed 14.30, 19.20, 21.80, and 22.30 comparable with thiourea (IC50 = 31.40 µM), respectively, showed excellent inhibitory activity. The structure-activity relationship revealed that the size and electron-donating or electron-withdrawing effects of substituents influenced the enzymatic activities such as α-glucosidase and urease. Compound 6 was a dual potent inhibitor against α-glucosidase and urease due to the presence of -CF3 electron-withdrawing functionality on the phenyl ring. To the best of our knowledge, these synthetic compounds were found to be the most potent dual inhibitors of α-glucosidase and urease with minimum IC50 values. Moreover, in silico studies on most active compounds, i.e., 6, 7, 14, and 12, were also performed to understand the binding interaction of most active compounds with active sites of α-glucosidase and urease enzymes.

10.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38139795

ABSTRACT

A hybrid library of compounds based on indazole-based thiadiazole containing thiazolidinone moieties (1-17) was synthesized. The synthesized compounds were screened in vitro for their inhibition profile against targetedacetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities. All the derivatives demonstrated a varied range of inhibitory activities having IC50 values ranging from 0.86 ± 0.33 µM to 26.73 ± 0.84 µM (AChE) and 0.89 ± 0.12 µM to 27.08 ± 0.19 µM (BuChE), respectively. The results obtained were compared with standard Donepezil drugs (IC50 = 1.26 ± 0.18 µM for AChE) and (1.35 ± 0.37 µM for BuChE), respectively. Specifically, the derivatives 1-17, 1, 9, and 14 were found to be significantly active, with IC50 values of 0.86 ± 0.30, 0.92 ± 0.10, and 1.10 ± 0.37 µM (against AChE) and 0.89 ± 0.12, 0.98 ± 0.48 and 1.19 ± 0.42 µM (against BuChE), respectively.The structure-activity relationship (SAR) studies revealed that derivatives bearing para-CF3, ortho-OH, and para-F substitutions on the phenyl ring attached to the thiadiazole skeleton, as well as meta-Cl, -NO2, and para-chloro substitutions on the phenyl ring, having a significant effect on inhibitory potential. The synthesized scaffolds have been further characterized by using 1H-NMR, 13C-NMR, and (HR-MS) to confirm the precise structures of the synthesized compounds. Additionally, the molecular docking approach was carried out for most active compounds to explore the binding interactions established by most active compounds, with the active sites of targeted enzymes and obtained results supporting the experimental data.

11.
Mol Biotechnol ; 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38155285

ABSTRACT

MicroRNAs (miRNAs) are typically non-coding RNAs of 18-26 nucleotides (nts) that are produced endogenously and regulated post-transcriptionally through degradation or translational repression. Since miRNAs are evolutionarily conserved, their preservation is essential for important regulatory functions in plant development, growth, and responses to environmental stress. Sorghum bicolor (sbi) is a valuable food and fodder crop which is grown worldwide. A range of sbi miRNAs were identified so far as being connected to plant development and stress responses. Herein, we employed a variety of bioinformatics tools for miRNA profiling in sbi and a PCR-based platform for the validation of these miRNAs. In total, 74 new conserved sbi miRNAs from 52 miRNA families have been predicted. Using the psRNA Target method, 10613 different protein targets of these predicted miRNAs have been attained. These targets include 54 GO-terms which have substantial targets in the biological, molecular, and cellular processes. We particularly found that the sbi-miR1861c and sbi-miR5050 are involved to regulate sulphur compound biosynthetic process, while the significant spliceosomal complex is regulated by sbi-miR815b and sbi-miR7768b. Also, we report that the pre-ribosome, electron transport chain, cell communication, cellular respiration, protein localization, and photosynthesis are controlled by sbi-miR2907b, sbi-miR530, sbi-miR7749, sbi-miR1858a, sbi-mi7729a, and sbi-miR417, respectively. The identification and validation of these novel sbi miRNAs shall contribute a lot in improving the crop yield and ensure sustainable agriculture.

12.
Saudi Pharm J ; 31(11): 101823, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37965293

ABSTRACT

Thymidine phosphorylase (TP) is an angiogenic enzyme. It is crucial for the development, invasion and metastasis of tumors as well as angiogenesis. In our current research, we examine how structurally changing bis-thiadiazole bearing bis-schiff bases affects their ability to inhibit TP. Through the oxidative cyclization of pyridine-based bis-thiosemicarbazone with iodine, a series of fourteen analogs of bis-thiadiazole-based bis-imines with pyridine moiety were developed. Newly synthesized scaffolds were assessed in vitro for their thymidine phosphorylase inhibitory potential and showed moderate to good inhibition profile. Eleven scaffolds such as 4a-4d,4f-4 h and 4j-4 m were discovered to be more effective than standard drug at inhibiting the thymidine phosphorylase enzyme with IC50 values of 1.16 ± 1.20, 1.77 ± 1.10, 2.48 ± 1.30, 12.54 ± 1.60, 14.63 ± 1.70, 15.53 ± 1.80, 17.47 ± 1.70, 18.98 ± 1.70, 19.53 ± 1.50, 22.73 ± 2.40 and 24.87 ± 2.80 respectively, while remaining three analogs such as 4n, 4i and 4ewere found to be more potent, but they were less potent than the standard drug. All analogs underwent SAR studies based on the pattern of substitutions around the aryl part of the bis-thiadiazole skeleton. The most active analogs in the synthesized series were then molecular docking study performed to investigate their interactions of active part of enzyme. The results showed that remarkable interactions were exhibited by these analogs with the targeted enzymes active sites. Furthermore, to confirm the structure of synthesized analogs by employing spectroscopic tools such as HREI-MS and NMR.

13.
ACS Omega ; 8(42): 39110-39134, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901557

ABSTRACT

Designing a multifunctional conducting hydrogel wound dressing of suitable mechanical properties, adhesiveness, self-healing, autolytic debridement, antibacterial properties, and radical scavenging ability, as well as retaining an appropriate level of moisture around the wound is highly desirable in clinical application for treating cutaneous wounds healing. Here, we designed a novel class of electroactive hydrogel based on thiol-functionalized silver-graphene oxide nanoparticles (GO/Ag/TGA) core polyaniline (PANI) shell GO/Ag/TGA/PANI nanocomposites. Thus, a series of physically cross-linked hydrogel based on GO/Ag/TGA/PANI and poly(vinyl alcohol) (PVA) was prepared by freeze-thawing method. The hydrogel was characterized by XRD, UV, FTIR, TGA, TEM, SEM, Raman spectroscopy, cyclic voltammetry (CV), and four probes test. The hydrogel showed favorable properties such as excellent tensile strength, suitable gelation time (30-56 s), tunable rheological properties (G' ∼ 1 kPa), adhesiveness, and interconnected porous structure (freeze-dried). Besides this, the hydrogel also exhibits excellent exudate uptake capacity (10.4-0.2 g/g), high swelling ratio (72.4 to 93.5%), long-term antibacterial activity against multidrug-resistant (MDR) bacterial isolates, promising antioxidant (radical scavenging) efficiency, keeping the wound moisturized, prominent hemostatic efficiency, and fast self-healing ability to bear deformation. Interestingly, in vivo experiments indicated that electroactive hydrogels can significantly promote the healing rate of artificial wounds in rats, and histological analysis by H&E reveals higher granulation tissue thickness, collagen deposition, hair follicles, dermal papillary, keratinocytes, and marked increase (P < 0.05) in hydroxyproline at the wound site during 15 days of healing of impaired wounds. On the basis of vivo and vitro assay results, it is concluded that electroactive-hydrogel-attributed multifunctional properties may serve as suitable scaffold for treating chronic wound healing and skin regeneration.

14.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765096

ABSTRACT

A new series of thiazole derivatives (4a-p) incorporating imidazopyridine moiety was synthesized and assessed for their in vitro potential α-glucosidase potency using acarbose as a reference drug. The obtained results suggested that compounds 4a (docking score = -13.45), 4g (docking score = -12.87), 4o (docking score = -12.15), and 4p (docking score = -11.25) remarkably showed superior activity against the targeted α-glucosidase enzyme, with IC50 values of 5.57 ± 3.45, 8.85 ± 2.18, 7.16 ± 1.40, and 10.48 ± 2.20, respectively. Upon further investigation of the binding mode of the interactions by the most active scaffolds with the α-glucosidase active sites, the docking analysis was accomplished in order to explore the active cavity of the α-glucosidase enzyme. The interpretation of the results showed clearly that scaffolds 4a and 4o emerged as the most potent α-glucosidase inhibitors, with promising excellent binding interactions with the active site of the α-glucosidase enzyme. Furthermore, utilizing a variety of spectroscopic methods, such as 1H-NMR, 13C-NMR, and HREI-MS, the precise structures of the synthesized scaffolds were determined.

15.
ACS Omega ; 8(25): 22508-22522, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37396210

ABSTRACT

There is an increasing prevalence of diabetes mellitus throughout the world, and new compounds are necessary to combat this. The currently available antidiabetic therapies are long-term complicated and side effect-prone, and this has led to a demand for more affordable and more effective methods of tackling diabetes. Research is focused on finding alternative medicinal remedies with significant antidiabetic efficacy as well as low adverse effects. In this research work, we have focused our efforts to synthesize a series of 1,2,4-triazole-based bis-hydrazones and evaluated their antidiabetic properties. In addition, the precise structures of the synthesized derivatives were confirmed with the help of various spectroscopic techniques including 1H-NMR, 13C-NMR, and HREI-MS. To find the antidiabetic potentials of the synthesized compounds, in vitro α-glucosidase and α-amylase inhibitory activities were characterized using acarbose as the reference standard. From structure-activity (SAR) analysis, it was confirmed that any variation found in inhibitory activities of both α-amylase and α-glucosidase enzymes was due to the different substitution patterns of the substituent(s) at variable positions of both aryl rings A and B. The results of the antidiabetic assay were very encouraging and showed moderate to good inhibitory potentials with IC50 values ranging from 0.70 ± 0.05 to 35.70 ± 0.80 µM (α-amylase) and 1.10 ± 0.05 to 30.40 ± 0.70 µM (α-glucosidase). The obtained results were compared to those of the standard acarbose drug (IC50 = 10.30 ± 0.20 µM for α-amylase and IC50 = 9.80 ± 0.20 µM for α-glucosidase). Specifically, compounds 17, 15, and 16 were found to be significantly active with IC50 values of 0.70 ± 0.05, 1.80 ± 0.10, and 2.10 ± 0.10 µM against α-amylase and 1.10 ± 0.05, 1.50 ± 0.05, and 1.70 ± 0.10 µM against α-glucosidase, respectively. These findings reveal that triazole-containing bis-hydrazones act as α-amylase and α-glucosidase inhibitors, which help develop novel therapeutics for treating type-II diabetes mellitus and can act as lead molecules in drug discovery as potential antidiabetic agents.

16.
Antibiotics (Basel) ; 12(7)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37508186

ABSTRACT

The particle size at the nanometric level allows the manifestation of remarkable properties, chiefly due to changes in surface-to-volume ratio. This study is attributed to the novel green synthesis of nano silver by using essential oils as a capping and reducing agent. Clove oil, cinnamon oil, and cardamom oil were selected for the eco-friendly and low-cost fabrication of silver nanoparticles. The prepared nanoparticles were characterized by photoluminescence spectroscopy, FT-IR spectroscopy, X-Ray diffraction, energy dispersive X-ray spectroscopy, dynamic laser light scattering, thermogravimetric analysis, and transmission electron microscopy. It was found that samples prepared by using cinnamon oil (20 nm) and cardamom oil (12 nm) had smaller particle sizes as compared to those synthesized by using clove oil (45 nm). All the prepared samples exhibited very strong antimicrobial activities with a clear zone of inhibition (6-24 mm) against Staphylococcus aureus, Klebsiella pneumoniae, and Candida albicans. Very resilient photocatalytic activities of the samples were observed against Allura red and fast green dyes. It was concluded that the cinnamon oil-based system is the best size reducer and size homogenizer (less chances of agglomeration) as compared to clove oil and cardamom oil (more chances of agglomeration) for the synthesis of silver nanoparticles.

17.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37513821

ABSTRACT

Alzheimer's disease (AD) is a progressive neurological illness that is distinguished clinically by cognitive and memory decline and adversely affects the people of old age. The treatments for this disease gained much attention and have prompted increased interest among researchers in this field. As a springboard to explore new anti-Alzheimer's chemical prototypes, the present study was carried out for the synthesis of benzoxazole-oxadiazole analogues as effective Alzheimer's inhibitors. In this research work, we have focused our efforts to synthesize a series of benzoxazole-oxadiazole (1-19) and evaluating their anti-Alzheimer properties. In addition, the precise structures of synthesized derivatives were confirmed with the help of various spectroscopic techniques including 1H-NMR, 13C-NMR and HREI-MS. To find the anti-Alzheimer potentials of the synthesized compounds (1-19), in vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), inhibitory activities were performed using Donepezil as the reference standard. From structure-activity (SAR) analysis, it was confirmed that any variation found in inhibitory activities of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes were due to different substitution patterns of substituent(s) at the variable position of both acetophenone aryl and oxadiazole aryl rings. The results of the anti-Alzheimer assay were very encouraging and showed moderate to good inhibitory potentials with IC50 values ranging from 5.80 ± 2.18 to 40.80 ± 5.90 µM (against AChE) and 7.20 ± 2.30 to 42.60 ± 6.10 µM (against BuChE) as compared to standard Donepezil drug (IC50 = 33.65 ± 3.50 µM (for AChE) and 35.80 ± 4.60 µM (for BuChE), respectively. Specifically, analogues 2, 15 and 16 were identified to be significantly active, even found to be more potent than standard inhibitors with IC50 values of 6.40 ± 1.10, 5.80 ± 2.18 and 6.90 ± 1.20 (against AChE) and 7.50 ± 1.20, 7.20 ± 2.30 and 7.60 ± 2.10 (against BuChE). The results obtained were compared to standard drugs. These findings reveal that benzoxazole-oxadiazole analogues act as AChE and BuChE inhibitors to develop novel therapeutics for treating Alzheimer's disease and can act as lead molecules in drug discovery as potential anti-Alzheimer agents.

18.
Saudi Pharm J ; 31(8): 101667, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37448838

ABSTRACT

Purpose: Ulcer is a serious disease that is caused due to different bacteria and over usage of various NSAIDs which caused to reduce the defensive system of stomach. Therefore, some novel series are needed to overcome these issues. Methods: Oxazole-based imidazopyridine scaffolds (4a-p) were designed and synthesized by two step reaction protocol and then subjected to urease inhibition profile (in vitro). All the newly afforded analogs (4a-p) were found potent and demonstrated moderate to significant inhibition profile. Results: Particularly, the analogs 4i (IC50 = 5.68 ± 1.66 µM), 4o (IC50 = 7.11 ± 1.24 µM), 4 g (IC50 = 9.41 ± 1.19 µM) and 4 h (IC50 = 10.45 ± 2.57 µM) were identified to be more potent than standard thiourea drug (IC50 = 21.37 ± 1.76 µM). Additionally, the variety of spectroscopic tools such as 1H NMR, 13C NMR and HREI-MS analysis were employed to confirm the precise structures of all the newly afforded analogs. Discussion: The structure-activity relationship (SAR) studies showed that analogs possess the substitution either capable of furnishing strong HB like -OH or had strong EW nature such as -CF3 & -NO2 groups displayed superior inhibitory potentials than the standard thiourea drug. A good PLI (protein-ligand interaction) profile was shown by most active analogs when subjected to molecular study against corresponding target with key significant interactions such as pi-pi stacking, pi-pi T shaped and hydrogen bonding.

19.
ACS Omega ; 8(23): 20767-20778, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37332812

ABSTRACT

In humans, animals, and agriculture, parasitic nematode infection is a very serious issue. Many drugs are being used to control nematode infections. Owing to toxicity and nematodes' resistance to the available drugs, special attention is required to synthesize new drugs that are environmentally friendly with high-level efficacy. In the present study, various substituted thiazine derivatives (1 to 15) were synthesized, and the structures were confirmed by infrared, proton (1H), and 13C NMR spectroscopies. The nematicidal potential of the synthesized derivatives was characterized using Caenorhabditis elegans (C. elegans) as a model organism. Among all synthesized compounds, 13 (LD50 = 38.95 µg/mL) and 15 (LD50 = 38.21 µg/mL) were considered the most potent compounds. Most compounds showed excellent anti-egg-hatching activity. Fluorescence microscopy confirmed that compounds 4, 8, 9, 13, and 15 displayed a high apoptotic effect. The expressions of gst-4, hsp-4, hsp16.2, and gpdh-1 genes were high in affected (treated with thiazine derivatives) C. elegans in comparison with normal C. elegans. The present research revealed that modified compounds are highly effective as they showed the gene level changes in the selected nematode. Due to structural modification in thiazine analogues, the compounds showed various modes of action. The most effective thiazine derivatives could be excellent candidates for novel broad-scale nematicidal drugs.

20.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-37259358

ABSTRACT

Twenty-one analogs were synthesized based on benzimidazole, incorporating a substituted benzaldehyde moiety (1-21). These were then screened for their acetylcholinesterase and butyrylcholinesterase inhibition profiles. All the derivatives except 13, 14, and 20 showed various inhibitory potentials, ranging from IC50 values of 0.050 ± 0.001 µM to 25.30 ± 0.40 µM against acetylcholinesterase, and 0.080 ± 0.001 µM to 25.80 ± 0.40 µM against butyrylcholinesterase, when compared with the standard drug donepezil (0.016 ± 0.12 µM and 0.30 ± 0.010 µM, against acetylcholinesterase and butyrylcholinesterase, respectively). Compound 3 in both cases was found to be the most potent compound due to the presence of chloro groups at the 3 and 4 positions of the phenyl ring. A structure-activity relationship study was performed for all the analogs except 13, 14, and 20, further, molecular dynamics simulations were performed for the top two compounds as well as the reference compound in a complex with acetylcholinesterase and butyrylcholinesterase. The molecular dynamics simulation analysis revealed that compound 3 formed the most stable complex with both acetylcholinesterase and butyrylcholinesterase, followed by compound 10. As compared to the standard inhibitor donepezil both compounds revealed greater stabilities and higher binding affinities for both acetylcholinesterase and butyrylcholinesterase.

SELECTION OF CITATIONS
SEARCH DETAIL