Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ASAIO J ; 68(6): 791-799, 2022 06 01.
Article in English | MEDLINE | ID: mdl-34860709

ABSTRACT

Current generation continuous flow assist devices to operate at a fixed speed, which limits preload response and exercise capacity in left ventricular assist device (LVAD) patients. A feedback control system was developed to automatically adjust pump speed based on direct measurements of ventricular loading using a custom cannula tip with an integrated pressure sensor and volume-sensing conductance electrodes. The input to the control system is the integral of the left ventricular (LV) pressure versus conductance loop (PGA) over each cardiac cycle. The feedback control system adjusts pump speed based on the difference between the measured PGA and the desired PGA. The control system and cannula tip were tested in acute ovine studies (n = 5) using the HeartMate II LVAD. The preload response of the control system was evaluated by partially occluding and releasing the inferior vena cava using a vessel loop snare. The cannula tip was integrated onto a custom centrifugal flow LVAD and tested in a 14-day bovine study. The control system adjusted pump support to maintain constant ventricular loading: pump speed increased (decreased) following an increase (decrease) in preload. This study demonstrated in vivo the Starling-like response of an automatic pump control system based on direct measurements of LV loading.


Subject(s)
Heart-Assist Devices , Animals , Cattle , Humans , Cannula , Heart Ventricles , Sheep , Ventricular Pressure
2.
ASAIO J ; 67(11): 1240-1249, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33883510

ABSTRACT

We have miniaturized and optimized our implantable rotary blood pump developed to provide long-term mechanical right heart support for patients who have failing Fontan circulation. The objective of this study was to evaluate the miniaturized Fontan circulation assist device (mini-FCAD) during 30-day sheep studies (n = 5). A complete right heart bypass was performed and all return flow was supported by the pump. Postoperatively, unfractionated heparin was given to maintain thromboelastography R times of 2× normal. The first two studies were terminated on day 0 and day 4 due to complications. In the final three studies, the animals remained healthy and were electively terminated at 30 ± 2 days. Pump flow was between 5 and 7 lpm, left atrial pressure remained normal, and inlet pressures were between 3 and 18 mm Hg with no incidents of suction. There was no evidence of hemolysis, end organ or pulmonary dysfunction, thromboembolic events, nor thermal damage to the surrounding tissue. Explanted devices from two studies were free of thrombi and in the third study there were unattached thrombi on the SVC inlet of the rotor. The mini-FCAD was successfully tested in vivo as a right heart replacement device demonstrating adequate circulatory support and normal physiologic pulmonary and venous pressures.


Subject(s)
Fontan Procedure , Heart Bypass, Right , Heart-Assist Devices , Animals , Fontan Procedure/adverse effects , Heart-Assist Devices/adverse effects , Hemodynamics , Heparin , Humans , Sheep
3.
ASAIO J ; 65(4): 371-379, 2019.
Article in English | MEDLINE | ID: mdl-30681440

ABSTRACT

Mechanical circulatory support for children under 6 years of age remains a challenge. This article describes the preclinical status and the results of recent animal testing with the Penn State Infant Left Ventricular Assist Device (VAD). The objectives have been to 1) demonstrate acceptably low thromboembolic risk to support Food and Drug Administration approval, 2) challenge the device by using minimal to no anticoagulation in order to identify any design or manufacturing weaknesses, and 3) improve our understanding of device thrombogenicity in the ovine animal model, using multicomponent measurements of the coagulation system and renal ischemia quantification, in order to better correlate animal results with human results.The Infant VAD was implanted as a left VAD (LVAD) in 18-29 kg lambs. Twelve LVAD and five surgical sham animals were electively terminated after approximately 30 or 60 days. Anticoagulation was by unfractionated heparin targeting thromboelastography R times of 2x normal (n = 6) or 1x normal (n = 6) resulting in negligible heparin activity as measured by anti-Xa assay (<0.1 IU/ml). Platelet inhibitors were not used.There were no clinically evident strokes or evidence of end organ dysfunction in any of the 12 electively terminated LVAD studies. The degree of renal ischemic lesions in device animals was not significantly different than that found in five surgical sham studies, demonstrating minimal device thromboembolism.In summary, these results in a challenging animal test protocol support the conclusion that the Penn State Infant VAD has a low thromboembolic risk and may allow lower levels of anticoagulation.


Subject(s)
Heart Failure/surgery , Heart-Assist Devices/adverse effects , Thromboembolism/prevention & control , Animals , Anticoagulants/therapeutic use , Blood Coagulation , Equipment Design , Female , Heart Failure/complications , Heparin , Humans , Infant , Male , Models, Animal , Sheep , Sheep, Domestic
4.
ASAIO J ; 65(6): 593-600, 2019 08.
Article in English | MEDLINE | ID: mdl-30299303

ABSTRACT

An implantable rotary blood pump was developed to provide long-term mechanical right heart support for patients who have failing Fontan circulation. The objective of this study was to evaluate the pump in vivo in a 30 day sheep study. Pump speed was set at 3,900 rpm for the duration of the study, and pump power was between 4.3 and 4.6 W. The pump inlet pressures for the superior vena cava (SVC) and inferior vena cava (IVC) were 14 ± 15 and 11 ± 15 mm Hg, respectively, over the duration of the study. Hematocrit remained stable at 30% ± 4%. Partial thromboplastin time (PTT) steadily increased from 30 s preoperatively to a high of 59 s on postoperative day 20, while prothrombin time (PT) remained at 20 ± 2 s for the duration of the study. The implantation and postoperative recovery were successful, and the animal demonstrated normal physiologic pulmonary and venous pressures and cardiac output. On pump inspection, the IVC and SVC inlets were completely clear of any deposits, but there were small thrombi (approximately 0.5 mm diameter) between each of the three rotor blades and along 20% of the parting line of the two volute halves. A complete right heart bypass was performed, postoperative recovery was successful, and the pump demonstrated adequate circulatory support and normal physiologic pulmonary and venous pressures. This study was the first successful test of a right heart replacement device in a chronic animal study.


Subject(s)
Fontan Procedure , Heart Bypass, Right/methods , Animals , Assisted Circulation , Fontan Procedure/instrumentation , Heart Bypass, Right/instrumentation , Hemodynamics/physiology , Male , Sheep , Vena Cava, Inferior/physiopathology , Vena Cava, Superior/physiopathology
5.
Artif Organs ; 43(2): 199-206, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30374981

ABSTRACT

Despite the prevailing use of the continuous flow left ventricular assist devices (cf-LVAD), acquired von Willebrand syndrome (AvWS) associated with cf-LVAD still remains a major complication. As AvWS is known to be dependent on shear stress (τ) and exposure time (texp ), this study examined the degradation of high molecular weight multimers (HMWM) of von Willebrand factor (vWF) in terms of τ and texp . Two custom apparatus, i.e., capillary-tubing-type degrader (CTD) and Taylor-Couette-type degrader (TCD) were developed for short-term (0.033 sec ≤ texp  ≤ 1.05 s) and long-term (10 s ≤ texp  ≤ 10 min) shear exposures of vWF, respectively. Flow conditions indexed by Reynolds number (Re) for CTD were 14 ≤ Re ≤ 288 with corresponding laminar stress level of 52 ≤  τ CTD  ≤ 1042 dyne/cm2 . Flow conditions for TCD were 100 ≤ Re ≤ 2500 with corresponding rotor speed of 180 ≤ o  ≤ 4000 RPM and laminar stress level of 50 ≤  τ TCD  ≤ 1114 dyne/cm2 . Due to transitional and turbulent flows in TCD at Re > 1117, total stress (i.e., τ total  = laminar + turbulent) was also calculated using a computational fluid dynamics (CFD) solver, Converge CFD (Converge Science Inc., Madison, WI, USA). Inhibition of ADAMTS13 with different concentration of EDTA (5 mM and 10 mM) was also performed to investigate the mechanism of cleavage in terms of mechanical and enzymatic aspects. Degradation of HMWM with CTD was negligible at all given testing conditions. Although no degradation of HMWM was observed with TCD at Re < 1117 ( τ total  = 1012 dyne/cm2 ), increase in degradation of HMWM was observed beyond Re of 1117 for all given exposure times. At Re ~ 2500 ( τ total  = 3070 dyne/cm2 ) with texp  = 60 s, a severe degradation of HMWM (90.7 ± 3.8%, abnormal) was observed, and almost complete degradation of HMWM (96.1 ± 1.9%, abnormal) was observed with texp  = 600 s. The inhibition studies with 5 mM EDTA at Re ~ 2500 showed that loss of HMWM was negligible (<10%, normal) for all given exposure times except for texp  = 10 min (39.5 ± 22.3%, borderline-abnormal). With 10 mM EDTA, no degradation of HMWM was observed (11.1 ± 4.4%, normal) even for texp  = 10 min. This study investigated the effect of shear stress and exposure time on the HMWM of vWF in laminar and turbulent flows. The inhibition study by EDTA confirms that degradation of HMWM is initiated by shear-induced unfolding followed by enzymatic cleavage at given conditions. Determination of magnitude of each mechanism needs further investigation. It is also important to note that the degradation of vWF is highly dependent on turbulence regardless of the time exposed within our testing conditions.


Subject(s)
Heart-Assist Devices/adverse effects , von Willebrand Diseases/etiology , von Willebrand Factor/metabolism , Hemodynamics/physiology , Humans , Materials Testing , von Willebrand Diseases/blood
6.
ASAIO J ; 64(1): 63-69, 2018.
Article in English | MEDLINE | ID: mdl-28661910

ABSTRACT

Reynolds shear stress (RSS) has served as a metric for the effect of turbulence on hemolysis. Forstrom (1969) and Sallam and Hwang (1984) determined the RSS threshold for hemolysis to be 50,000 and 4,000 dyne/cm, respectively, using a turbulent jet. Despite the order of magnitude discrepancy, the threshold by Sallam and Hwang has been frequently cited for hemolytic potential in blood pumps. We recreated a Sallam apparatus (SA) to resolve this discrepancy and provide additional data to be used in developing a more accurate hemolysis model. Hemolysis was measured over a large range of Reynolds numbers (Re) (Re = 1,000-80,000). Washed bovine red blood cells (RBCs) were injected into the free jet of phosphate buffered saline, and hemolysis was quantified using a percent hemolysis, Hp = h (100 - hematocrit [HCT])/Hb, where h (mg/dl) is free hemoglobin and Hb (mg/dl) is total hemoglobin. Reynolds shear stress was calculated using two-dimensional laser Doppler velocimetry. Reynolds shear stress of ≥30,000 dyne/cm corresponding to Re of ≥60,000 appeared to cause hemolysis (p < 0.05). This RSS is an order of magnitude greater than the RSS threshold that Sallam and Hwang suggested, and it is similar to Forstrom's RSS threshold. This study resolved a long-standing uncertainty regarding the critical values of RSS for hemolysis and may provide a foundation for a more accurate hemolysis model.


Subject(s)
Erythrocytes/cytology , Hematologic Tests/methods , Hemolysis/physiology , Stress, Mechanical , Animals , Blood Flow Velocity , Cattle , Hematocrit , Hemoglobins , Humans , Laser-Doppler Flowmetry/methods
7.
Toxicol Pathol ; 41(3): 519-27, 2013.
Article in English | MEDLINE | ID: mdl-22700648

ABSTRACT

Repeated bolus intravenous (IV) administration of large doses of beta-lactams and aminoglycosides has previously been associated with the development of eosinophilic and occlusive arterial lesions limited to the lungs in calves. Reviewing 13 years worth of records from left ventricular assist device implantation studies, morphologically identical segmental arterial lesions were present in 32 of the 56 calves receiving IV antibiotics, affecting lungs (6/50), kidneys (12/56), or lungs and kidneys (14/50). In 16 of these calves, renal arterial lesions spatially colocalized with renal cortical infarctions. Lesions were noted in additional abdominal organs in 4 of the 50 calves and were exclusively present in the liver in a single calf. Similar arterial lesions were also noted in the lungs (3/4), kidneys (1/4), liver (1/4), and spleen (1/4) of unimplanted calves receiving similar IV antibiotic regimens for bacterial infections. Lesions were observed with therapeutic IV doses of cephalosporins with or without aminoglycosides over shorter intervals than previously implicated. Lesions were significantly associated with increased peripheral eosinophil counts and mildly elevated, not reduced, arterial pulse pressures. This report documents the features of an idiosyncratic drug reaction with features strongly suggestive of an acute type-I hypersensitivity in this species.


Subject(s)
Anti-Bacterial Agents/adverse effects , Arteritis/chemically induced , Eosinophilia/chemically induced , Heart-Assist Devices , Animals , Arteritis/etiology , Arteritis/physiopathology , Blood Pressure , Cattle , Clinical Trials as Topic , Eosinophilia/etiology , Eosinophilia/physiopathology , Eosinophils/cytology , Eosinophils/drug effects , Infarction/pathology , Kidney/blood supply , Kidney/pathology , Kidney Cortex/blood supply , Kidney Cortex/pathology , Leukocyte Count , Lung/blood supply , Lung/pathology , Male , Pulmonary Artery/pathology , beta-Lactams/adverse effects
8.
ASAIO J ; 58(1): 65-72, 2012.
Article in English | MEDLINE | ID: mdl-22157073

ABSTRACT

The Penn State Infant Ventricular Assist Device (VAD) is a 12-14 ml stroke volume pneumatically actuated pump, with custom Björk-Shiley monostrut valves, developed under the National Heart, Lung, and Blood Institute Pediatric Circulatory Support program. In this report, we describe the seven most recent chronic animal studies of the Infant VAD in the juvenile ovine model, with a mean body weight of 23.5 ± 4.1 kg. The goal of 4-6 weeks survival was achieved in five of seven studies, with support duration ranging from 5 to 41 days; mean 26.1 days. Anticoagulation was accomplished using unfractionated heparin, and study animals were divided into two protocol groups: the first based on a target activated partial thromboplastin time of 1.5-2 times normal, and a second group using a target thromboelastography R-time of two times normal. The second group required significantly less heparin, which was verified by barely detectable heparin activity (anti-Xa). In both groups, there was no evidence of thromboembolism except in one animal with a chronic infection and fever. Device thrombi were minimal and were further reduced by introduction of the custom valve. These results are consistent with results of adult VAD testing in animals and are encouraging given the extremely low levels of anticoagulation in the second group.


Subject(s)
Cardiology/instrumentation , Heart-Assist Devices , Animals , Anticoagulants/therapeutic use , Chronic Disease , Fever , Heart Valve Prosthesis Implantation , Heparin/therapeutic use , Materials Testing , Models, Animal , Partial Thromboplastin Time , Prosthesis Design , Sheep , Treatment Outcome
9.
ASAIO J ; 57(5): 407-13, 2011.
Article in English | MEDLINE | ID: mdl-21817896

ABSTRACT

Although the use of left ventricular assist devices (LVADs) as a bridge-to-recovery (BTR) has shown promise, clinical success has been limited due to the lack of understanding the timing of implantation, acute/chronic device setting, and explantation. This study investigated the effective ventricular unloading at different heart conditions by using a mock circulatory system (MCS) to provide a tool for pump parameter adjustments. We tested the hypothesis that effective unloading by LVAD at a given speed varies with the stage of heart failure. By using a MCS, systematic depression of cardiac performance was obtained. Five different stages of heart failure from control were achieved by adjusting the pneumatic systolic/diastolic pressure, filling pressure, and systemic resistance. The Heart Mate II® (Thoratec Corp., Pleasanton, CA) was used for volumetric and pressure unloading at different heart conditions over a given LVAD speed. The effective unloading at a given LVAD speed was greater in more depressed heart condition. The rate of unloading over LVAD speed was also greater in more depressed heart condition. In conclusion, to get continuous and optimal cardiac recovery, timely increase in LVAD speed over a period of support is needed while avoiding the akinesis of aortic valve.


Subject(s)
Heart Failure/physiopathology , Heart Ventricles/physiopathology , Heart-Assist Devices , Ventricular Dysfunction, Left/therapy , Algorithms , Computer Simulation , Heart/physiology , Heart Failure/diagnosis , Heart Failure/therapy , Hemodynamics , Humans , Models, Cardiovascular , Pressure
10.
ASAIO J ; 52(6): 712-7, 2006.
Article in English | MEDLINE | ID: mdl-17117064

ABSTRACT

The objective of this investigation was to compare pulsatile versus nonpulsatile perfusion modes in terms of surplus hemodynamic energy (SHE) levels during cardiopulmonary bypass (CPB) in a simulated neonatal model. The extracorporeal circuit consisted of a Jostra HL-20 heart-lung machine (for both pulsatile and nonpulsatile modes of perfusion), a Capiox Baby RX hollow-fiber membrane oxygenator, a Capiox pediatric arterial filter, 5 feet of arterial tubing and 6 feet of venous tubing with a quarter-inch diameter. The circuit was primed with a lactated Ringers solution. The systemic resistance of a pseudo-patient (mean weight, 3 kg) was simulated by placing a clamp at the end of the arterial line. The pseudo-patient was subjected to five pump flow rates in the 400 to 800 ml/min range. During pulsatile perfusion, the pump rate was kept constant at 120 bpm. Pressure waveforms were recorded at the preoxygenator, postoxygenator, and preaortic cannula sites. SHE was calculated by use of the following formula {SHE (ergs/cm) = 1,332 [((integral fpdt) / (integral fdt)) - Mean Arterial Pressure]} (f = pump flow and p = pressure). A total of 60 experiments were performed (n = 6 for nonpulsatile and n = 6 for pulsatile) at each of the five flow rates. A linear mixed-effects model, which accounts for the correlation among repeated measurements, was fit to the data to assess differences in SHE between flows, pumps, and sites. The Tukey multiple comparison procedure was used to adjust p values for post hoc pairwise comparisons. With a pump flow rate of 400 ml/min, pulsatile flow generated significantly higher surplus hemodynamic energy levels at the preoxygenator site (23,421 +/- 2,068 ergs/cm vs. 4,154 +/- 331 ergs/cm, p < 0.0001), the postoxygenator site (18,784 +/- 1,557 ergs/cm vs. 3,383 +/- 317 ergs/cm, p < 0.0001), and the precannula site (6,324 +/- 772 ergs/cm vs. 1,320 +/- 91 ergs/cm, p < 0.0001), compared with the nonpulsatile group. Pulsatile flow produced higher SHE levels at all other pump flow rates. The Jostra HL-20 roller pump generated significantly higher SHE levels in the pulsatile mode when compared with the nonpulsatile mode at all five pump flow rates.


Subject(s)
Blood Flow Velocity , Blood Pressure , Cardiopulmonary Bypass/instrumentation , Cardiopulmonary Bypass/methods , Models, Cardiovascular , Energy Metabolism , Humans , In Vitro Techniques , Infant, Newborn , Pulsatile Flow
11.
Perfusion ; 21(6): 381-90, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17312863

ABSTRACT

PURPOSE: The objectives of this investigation were (1) to compare two hollow-fiber membrane oxygenators (Capiox Baby RX versus Lilliput 1-D901) in terms of pressure drops and surplus hemodynamic energy (SHE) during normothermic and hypothermic cardiopulmonary bypass (CPB) in a simulated neonatal model; and (2) to evaluate pulsatile and non-pulsatile perfusion modes for each oxygenator in terms of SHE levels. METHODS: In a simulated patient, CPB was initiated at a constant pump flow rate of 500 mL/min. The circuit was primed with fresh bovine blood. After 5 min of normothermic CPB, the pseudo-patient was cooled down to 25 degrees C for 10 min followed by 30 min of hypothermic CPB. The pseudo-patient then underwent 10 min of rewarming and 5 min of normothermic CPB. At each experimental site (pre- and post-oxygenator and pre-aortic cannula), SHE was calculated using the following formula {SHE (ergs/cm3) = 1332 [((integralfpdt)/(integralfdt)) - mean arterial pressure]} (f = pump flow and p = pressure). A linear mixed-effects model that accounts for the correlation among repeated measurements was fit to the data to assess differences in SHE between oxygenators, pumps, and sites. Tukey's multiple comparison procedure was used to adjust p-values for post-hoc pairwise comparisons. RESULTS: The pressure drops in the Capiox group compared to the Lilliput group were significantly lower during hypothermic non-pulsatile (21.3 +/- 0.5 versus 50.7 +/- 0.9 mmHg, p < 0.001) and pulsatile (22 +/- 0.0 versus 53.3 +/- 0.5 mmHg, p < 0.001) perfusion, respectively. Surplus hemodynamic energy levels were significantly higher in the pulsatile group compared to the non-pulsatile group, with Capiox (1655 +/- 92 versus 10008 +/- 1370 ergs/cm3, p < 0.001) or Lilliput (1506 +/- 112 versus 7531 +/- 483 ergs/cm3, p < 0.001) oxygenators. During normothermic CPB, both oxygenators had patterns similar to those observed under hypothermic conditions. CONCLUSIONS: The Capiox oxygenator had a significantly lower pressure drop in both pulsatile and non-pulsatile perfusion modes. For each oxygenator, the SHE levels were significantly higher in the pulsatile mode.


Subject(s)
Cold Temperature , Extracorporeal Membrane Oxygenation/instrumentation , Models, Cardiovascular , Blood Pressure , Humans , Infant, Newborn , Materials Testing , Perfusion , Pressure , Pulsatile Flow
12.
ASAIO J ; 51(3): 214-23, 2005.
Article in English | MEDLINE | ID: mdl-15968950

ABSTRACT

In vitro durability testing was conducted on the Penn State/3M electric total artificial heart (ETAH) to determine device durability and to evaluate device failures. A specialized mock circulatory loop was developed for this testing. Customized software continuously acquired data during the test period, and failures were analyzed using FMEA (failure modes and effects analysis) and FMECA (failure modes, effects, and criticality analysis) principles. Redesigns were implemented when appropriate. Reliability growth principles were then applied to calculate the 1 and 2 year reliability. The 1 and 2 year reliability of the Penn State/3M ETAH was shown to be 96.1% and 59.9%, respectively, at 80% confidence.


Subject(s)
Heart, Artificial , Electronics , Heart, Artificial/adverse effects , Humans
13.
ASAIO J ; 51(1): 56-9, 2005.
Article in English | MEDLINE | ID: mdl-15745135

ABSTRACT

Unreliable quantification of flow pulsatility has hampered many efforts to assess the importance of pulsatile perfusion. Generation of pulsatile flow depends upon an energy gradient. It is necessary to quantify pressure flow waveforms in terms of hemodynamic energy levels to make a valid comparison between perfusion modes during chronic support. The objective of this study was to quantify pressure flow waveforms in terms of energy equivalent pressure (EEP) and surplus hemodynamic energy (SHE) levels in an adult mock loop using a pulsatile ventricle assist system (VAD). A 70 cc Pierce-Donachy pneumatic pulsatile VAD was used with a Penn State adult mock loop. The pump flow rate was kept constant at 5 L/min with pump rates of 70 and 80 bpm and mean aortic pressures (MAP) of 80, 90, and 100 mm Hg, respectively. Pump flows were adjusted by varying the systolic pressure, systolic duration, and the diastolic vacuum of the pneumatic drive unit. The aortic pressure was adjusted by varying the systemic resistance of the mock loop EEP (mm Hg) = (integral of fpdf)/(integral of fdt) SHE (ergs/cm3) = 1,332 [((integral of fpdt)/(integral of fdt))--MAP] were calculated at each experimental stage. The difference between the EEP and the MAP is the extra energy generated by this device. This difference is approximately 10% in a normal human heart. The EEP levels were 88.3 +/- 0.9 mm Hg, 98.1 +/- 1.3 mm Hg, and 107.4 +/- 1.0 mm Hg with a pump rate of 70 bpm and an aortic pressure of 80 mm Hg, 90 mm Hg, and 100 mm Hg, respectively. Surplus hemodynamic energy in terms of ergs/cm3 was 11,039 +/- 1,236 ergs/cm3, 10,839 +/- 1,659 ergs/cm3, and 9,857 +/- 1,289 ergs/cm3, respectively. The percentage change from the mean aortic pressure to EEP was 10.4 +/- 1.2%, 9.0 +/- 1.4%, and 7.4 +/- 1.0% at the same experimental stages. Similar results were obtained when the pump rate was changed from 70 bpm to 80 bpm. The EEP and SHE formulas are adequate to quantify different levels of pulsatility for direct and meaningful comparisons. This particular pulsatile VAD system produces near physiologic hemodynamic energy levels at each experimental stage.


Subject(s)
Blood Pressure/physiology , Heart-Assist Devices , Pulsatile Flow , Adult , Aorta , Blood Flow Velocity , Energy Metabolism , Heart Ventricles , Hemodynamics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...