Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38717626

ABSTRACT

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

2.
Proc Natl Acad Sci U S A ; 121(23): e2400727121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38819998

ABSTRACT

Understanding the interplay between charge, nematic, and structural ordering tendencies in cuprate superconductors is critical to unraveling their complex phase diagram. Using pump-probe time-resolved resonant X-ray scattering on the (0 0 1) Bragg peak at the Cu [Formula: see text] and O [Formula: see text] resonances, we investigate nonequilibrium dynamics of [Formula: see text] nematic order and its association with both charge density wave (CDW) order and lattice dynamics in La[Formula: see text]Eu[Formula: see text]Sr[Formula: see text]CuO[Formula: see text]. The orbital selectivity of the resonant X-ray scattering cross-section allows nematicity dynamics associated with the planar O 2[Formula: see text] and Cu 3[Formula: see text] states to be distinguished from the response of anisotropic lattice distortions. A direct time-domain comparison of CDW translational-symmetry breaking and nematic rotational-symmetry breaking reveals that these broken symmetries remain closely linked in the photoexcited state, consistent with the stability of CDW topological defects in the investigated pump fluence regime.

3.
Sci Adv ; 10(11): eadk9051, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38478610

ABSTRACT

Phonon scattering in metals is one of the most fundamental processes in materials science. However, understanding such processes has remained challenging and requires detailed information on interactions between phonons and electrons. We use an ultrafast electron diffuse scattering technique to resolve the nonequilibrium phonon dynamics in femtosecond-laser-excited tungsten in both time and momentum. We determine transient populations of phonon modes which show strong momentum dependence initiated by electron-phonon coupling. For phonons near Brillouin zone border, we observe a transient rise in their population on a timescale of approximately 1 picosecond driven by the strong electron-phonon coupling, followed by a slow decay on a timescale of approximately 8 picosecond governed by the weaker phonon-phonon relaxation process. We find that the exceptional harmonicity of tungsten is needed for isolating the two processes, resulting in long-lived nonequilibrium phonons in a pure metal. Our finding highlights that electron-phonon scattering can be the determinant factor in the phonon thermal transport of metals.

4.
J Am Chem Soc ; 146(6): 4134-4143, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38317439

ABSTRACT

Identifying multiple rival reaction products and transient species formed during ultrafast photochemical reactions and determining their time-evolving relative populations are key steps toward understanding and predicting photochemical outcomes. Yet, most contemporary ultrafast studies struggle with clearly identifying and quantifying competing molecular structures/species among the emerging reaction products. Here, we show that mega-electronvolt ultrafast electron diffraction in combination with ab initio molecular dynamics calculations offer a powerful route to determining time-resolved populations of the various isomeric products formed after UV (266 nm) excitation of the five-membered heterocyclic molecule 2(5H)-thiophenone. This strategy provides experimental validation of the predicted high (∼50%) yield of an episulfide isomer containing a strained three-membered ring within ∼1 ps of photoexcitation and highlights the rapidity of interconversion between the rival highly vibrationally excited photoproducts in their ground electronic state.

SELECTION OF CITATIONS
SEARCH DETAIL