Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Discov ; 13(1): 114-131, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36259971

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) remains a fatal brainstem tumor demanding innovative therapies. As B7-H3 (CD276) is expressed on central nervous system (CNS) tumors, we designed B7-H3-specific chimeric antigen receptor (CAR) T cells, confirmed their preclinical efficacy, and opened BrainChild-03 (NCT04185038), a first-in-human phase I trial administering repeated locoregional B7-H3 CAR T cells to children with recurrent/refractory CNS tumors and DIPG. Here, we report the results of the first three evaluable patients with DIPG (including two who enrolled after progression), who received 40 infusions with no dose-limiting toxicities. One patient had sustained clinical and radiographic improvement through 12 months on study. Patients exhibited correlative evidence of local immune activation and persistent cerebrospinal fluid (CSF) B7-H3 CAR T cells. Targeted mass spectrometry of CSF biospecimens revealed modulation of B7-H3 and critical immune analytes (CD14, CD163, CSF-1, CXCL13, and VCAM-1). Our data suggest the feasibility of repeated intracranial B7-H3 CAR T-cell dosing and that intracranial delivery may induce local immune activation. SIGNIFICANCE: This is the first report of repeatedly dosed intracranial B7-H3 CAR T cells for patients with DIPG and includes preliminary tolerability, the detection of CAR T cells in the CSF, CSF cytokine elevations supporting locoregional immune activation, and the feasibility of serial mass spectrometry from both serum and CSF. This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Humans , B7 Antigens , Brain Stem Neoplasms/therapy , T-Lymphocytes
2.
Cancer Immunol Res ; 9(9): 1047-1060, 2021 09.
Article in English | MEDLINE | ID: mdl-34244298

ABSTRACT

Synthetic immunology, as exemplified by chimeric antigen receptor (CAR) T-cell immunotherapy, has transformed the treatment of relapsed/refractory B cell-lineage malignancies. However, there are substantial barriers-including limited tumor homing, lack of retention of function within a suppressive tumor microenvironment, and antigen heterogeneity/escape-to using this technology to effectively treat solid tumors. A multiplexed engineering approach is needed to equip effector T cells with synthetic countermeasures to overcome these barriers. This, in turn, necessitates combinatorial use of lentiviruses because of the limited payload size of current lentiviral vectors. Accordingly, there is a need for cell-surface human molecular constructs that mark multi-vector cotransduced T cells, to enable their purification ex vivo and their tracking in vivo. To this end, we engineered a cell surface-localizing polypeptide tag based on human HER2, designated HER2t, that was truncated in its extracellular and intracellular domains to eliminate ligand binding and signaling, respectively, and retained the membrane-proximal binding epitope of the HER2-specific mAb trastuzumab. We linked HER2t to CAR coexpression in lentivirally transduced T cells and showed that co-transduction with a second lentivirus expressing our previously described EGFRt tag linked to a second CAR efficiently generated bispecific dual-CAR T cells. Using the same approach, we generated T cells expressing a CAR and a second module, a chimeric cytokine receptor. The HER2txEGFRt multiplexing strategy is now being deployed for the manufacture of CD19xCD22 bispecific CAR T-cell products for the treatment of acute lymphoblastic leukemia (NCT03330691).


Subject(s)
Immunotherapy, Adoptive/methods , Lentivirus/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Animals , Cell Line, Tumor , Cytotoxicity, Immunologic , Female , Genetic Vectors , Humans , Mice , Peptides/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Transduction, Genetic , Trastuzumab/therapeutic use , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...