Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters










Publication year range
1.
New Phytol ; 242(2): 626-640, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38396236

ABSTRACT

Gibberellins (GA) have a profound influence on the formation of lateral root organs. However, the precise role this hormone plays in the cell-specific events during lateral root formation, rhizobial infection and nodule organogenesis, including interactions with auxin and cytokinin (CK), is not clear. We performed epidermal- and endodermal-specific complementation of the severely GA-deficient na pea (Pisum sativum) mutant with Agrobacterium rhizogenes. Gibberellin mutants were used to examine the spatial expression pattern of CK (TCSn)- and auxin (DR5)-responsive promoters and hormone levels. We found that GA produced in the endodermis promote lateral root and nodule organogenesis and can induce a mobile signal(s) that suppresses rhizobial infection. By contrast, epidermal-derived GA suppress infection but have little influence on root or nodule development. GA suppress the CK-responsive TCSn promoter in the cortex and are required for normal auxin activation during nodule primordia formation. Our findings indicate that GA regulate the checkpoints between infection thread (IT) penetration of the cortex and invasion of nodule primordial cells and promote the subsequent progression of nodule development. It appears that GA limit the progression and branching of IT in the cortex by restricting CK response and activate auxin response to promote nodule primordia development.


Subject(s)
Gibberellins , Plant Root Nodulation , Plant Root Nodulation/physiology , Cytokinins , Indoleacetic Acids/pharmacology , Pisum sativum/genetics , Hormones , Gene Expression Regulation, Plant , Root Nodules, Plant/microbiology , Symbiosis , Plant Proteins/genetics , Plant Proteins/metabolism
2.
Plant Cell Physiol ; 65(1): 107-119, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37874980

ABSTRACT

Symbioses with beneficial microbes are widespread in plants, but these relationships must balance the energy invested by the plants with the nutrients acquired. Symbiosis with arbuscular mycorrhizal (AM) fungi occurs throughout land plants, but our understanding of the genes and signals that regulate colonization levels is limited, especially in non-legumes. Here, we demonstrate that in tomato, two CLV3/EMBRYO-SURROUNDING REGION (CLE) peptides, SlCLE10 and SlCLE11, act to suppress AM colonization of roots. Mutant studies and overexpression via hairy transformation indicate that SlCLE11 acts locally in the root to limit AM colonization. Indeed, SlCLE11 expression is strongly induced in AM-colonized roots, but SlCLE11 is not required for phosphate suppression of AM colonization. SlCLE11 requires the FIN gene that encodes an enzyme required for CLE peptide arabinosylation to suppress mycorrhizal colonization. However, SlCLE11 suppression of AM does not require two CLE receptors with roles in regulating AM colonization, SlFAB (CLAVATA1 ortholog) or SlCLV2. Indeed, multiple parallel pathways appear to suppress mycorrhizal colonization in tomato, as double mutant studies indicate that SlCLV2 and FIN have an additive influence on mycorrhizal colonization. SlCLE10 appears to play a more minor or redundant role, as cle10 mutants did not influence intraradical AM colonization. However, the fact that cle10 mutants had an elevated number of hyphopodia and that ectopic overexpression of SlCLE10 did suppress mycorrhizal colonization suggests that SlCLE10 may also play a role in suppressing AM colonization. Our findings show that CLE peptides regulate AM colonization in tomato and at least SlCLE11 likely requires arabinosylation for activity.


Subject(s)
Mycorrhizae , Solanum lycopersicum , Mycorrhizae/physiology , Solanum lycopersicum/genetics , Plant Roots/metabolism , Symbiosis/genetics , Peptides/metabolism
3.
Plant Physiol ; 190(4): 2103-2114, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36094356

ABSTRACT

Two hundred years after the birth of Gregor Mendel, it is an appropriate time to reflect on recent developments in the discipline of genetics, particularly advances relating to the prescient friar's model species, the garden pea (Pisum sativum L.). Mendel's study of seven characteristics established the laws of segregation and independent assortment. The genes underlying four of Mendel's loci (A, LE, I, and R) have been characterized at the molecular level for over a decade. However, the three remaining genes, influencing pod color (GP), pod form (V/P), and the position of flowers (FA/FAS), have remained elusive for a variety of reasons, including a lack of detail regarding the loci with which Mendel worked. Here, we discuss potential candidate genes for these characteristics, in light of recent advances in the genetic resources for pea. These advances, including the pea genome sequence and reverse-genetics techniques, have revitalized pea as an excellent model species for physiological-genetic studies. We also discuss the issues that have been raised with Mendel's results, such as the recent controversy regarding the discrete nature of the characters that Mendel chose and the perceived overly-good fit of his segregations to his hypotheses. We also consider the relevance of these controversies to his lasting contribution. Finally, we discuss the use of Mendel's classical results to teach and enthuse future generations of geneticists, not only regarding the core principles of the discipline, but also its history and the role of hypothesis testing.


Subject(s)
Flowers , Pisum sativum , Pisum sativum/genetics , Flowers/genetics
4.
Plant Commun ; 3(5): 100327, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35605199

ABSTRACT

Many legume plants form beneficial associations with rhizobial bacteria that are hosted in new plant root organs, nodules, in which atmospheric nitrogen is fixed. This association requires the precise coordination of two separate programs, infection in the epidermis and nodule organogenesis in the cortex. There is extensive literature indicating key roles for plant hormones during nodulation, but a detailed analysis of the spatial and temporal roles of plant hormones during the different stages of nodulation is required. This review analyses the current literature on hormone regulation of infection and organogenesis to reveal the differential roles and interactions of auxin, cytokinin, brassinosteroids, ethylene, and gibberellins during epidermal infection and cortical nodule initiation, development, and function. With the exception of auxin, all of these hormones suppress infection events. By contrast, there is evidence that all of these hormones promote nodule organogenesis, except ethylene, which suppresses nodule initiation. This differential role for many of the hormones between the epidermal and cortical programs is striking. Future work is required to fully examine hormone interactions and create a robust model that integrates this knowledge into our understanding of nodulation pathways.


Subject(s)
Fabaceae , Rhizobium , Ethylenes/metabolism , Hormones , Indoleacetic Acids/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Root Nodulation/physiology , Rhizobium/metabolism , Symbiosis
5.
Plant Sci ; 305: 110846, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33691972

ABSTRACT

Legume nodules are a unique plant organ that contain nitrogen-fixing rhizobial bacteria. For this interaction to be mutually beneficial, plant and bacterial metabolism must be precisely co-ordinated. Plant hormones are known to play essential roles during the establishment of legume-rhizobial symbioses but their role in subsequent nodule metabolism has not been explored in any depth. The plant hormones brassinosteroids, ethylene and gibberellins influence legume infection, nodule number and in some cases nodule function. In this paper, the influence of these hormones on nodule metabolism was examined in a series of well characterised pea mutants with altered hormone biosynthesis or response. A targeted set of metabolites involved in nutrient exchange and nitrogen fixation was examined in nodule tissue of mutant and wild type plants. Gibberellin-deficiency had a major negative impact on the level of several major dicarboxylates supplied to rhizobia by the plant and also led to a significant deficit in the amino acids involved in glutamine-aspartate transamination, consistent with the limited bacteroid development and low fixation rate of gibberellin-deficient na mutant nodules. In contrast, no major effects of brassinosteroid-deficiency or ethylene-insensitivity on the key metabolites in these pathways were found. Therefore, although all three hormones influence infection and nodule number, only gibberellin is important for the establishment of a functional nodule metabolome.


Subject(s)
Energy Metabolism/drug effects , Nitrogen Fixation/drug effects , Pisum sativum/genetics , Pisum sativum/metabolism , Plant Growth Regulators/metabolism , Plant Root Nodulation/drug effects , Root Nodules, Plant/metabolism , Symbiosis/drug effects , Brassinosteroids/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Gibberellins/metabolism , Mutation , Pisum sativum/microbiology , Rhizobium/physiology
6.
J Exp Bot ; 72(5): 1702-1713, 2021 02 27.
Article in English | MEDLINE | ID: mdl-33186449

ABSTRACT

Plants form mutualistic nutrient-acquiring symbioses with microbes, including arbuscular mycorrhizal fungi. The formation of these symbioses is costly, and plants employ a negative feedback loop termed autoregulation of mycorrhizae (AOM) to limit formation of arbuscular mycorrhizae (AM). We provide evidence for the role of one leucine-rich repeat receptor-like kinase (FAB), a hydroxyproline O-arabinosyltransferase enzyme (FIN), and additional evidence for one receptor-like protein (SlCLV2) in the negative regulation of AM formation in tomato. Reciprocal grafting experiments suggest that the FAB gene acts locally in the root, while the SlCLV2 gene may act in both the root and the shoot. External nutrients including phosphate and nitrate can also strongly suppress AM formation. We found that FAB and FIN are required for nitrate suppression of AM but are not required for the powerful suppression of AM colonization by phosphate. This parallels some of the roles of legume homologues in the autoregulation of the more recently evolved symbioses with nitrogen-fixing bacteria leading to nodulation. This deep homology in the symbiotic role of these genes suggests that in addition to the early signalling events that lead to the establishment of AM and nodulation, the autoregulation pathway might also be considered part of the common symbiotic toolkit that enabled plants to form beneficial symbioses.


Subject(s)
Fabaceae , Mycorrhizae , Solanum lycopersicum , Solanum lycopersicum/genetics , Nitrogen , Plant Roots , Symbiosis
7.
Physiol Plant ; 170(4): 607-621, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32880978

ABSTRACT

Plants use a variety of signals to control root development, including in modifying root development in response to nutrient stress. For example, in response to nitrogen (N) stress, plants dramatically modulate root development, including the formation of N-fixing nodules in legumes. Recently, specific CLE peptides and/or receptors important for their perception, including CLV1 and CLV2, have been found to play roles in root development, including in response to N supply. In the legume Medicago truncatula, this response also appears to be influenced by RDN1, a member of the hydroxyproline-O-arabinosyltransferase (HPAT) family which can modify specific CLE peptides. However, it is not known if this signalling pathway plays a central role in root development across species, and in particular root responses to N. In this study, we systematically examined the role of the CLV signalling pathway genes in root development of the legume pea (Pisum sativum) and non-legume tomato (Solanum lycopersicum) using a mutant-based approach. This included a detailed examination of root development in response to N in tomato mutants disrupted in CLV1- or CLV2-like genes or HPAT family member FIN. We found no evidence for a role of these genes in pea seedling root development. Furthermore, the CLV1-like FAB gene did not influence tomato root development, including the root response to N supply. In contrast, both CLV2 and the HPAT gene FIN appear to positively influence root size in tomato but do not mediate root responses to N. These results suggest the function of these genes may vary somewhat in different species, including the N regulation of root architecture.


Subject(s)
Gene Expression Regulation, Plant , Medicago truncatula , Hydroxyproline , Medicago truncatula/genetics , Medicago truncatula/metabolism , Nitrogen , Pentosyltransferases , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Planta ; 252(4): 70, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32995943

ABSTRACT

MAIN CONCLUSION: A comprehensive analysis of the role of brassinosteroids in nodulation, including their interactions with auxin and ethylene revealed that brassinosteroids inhibit infection, promote nodule initiation but do not influence nodule organogenesis or function. Nodulation, the symbiosis between legumes and rhizobial bacteria, is regulated by a suite of hormones including brassinosteroids. Previous studies have found that brassinosteroids promote nodule number by inhibiting ethylene biosynthesis. In this study, we examined the influence of brassinosteroids on the various stages of infection and nodule development. We utilise pea mutants, including brassinosteroid mutants lk, lka and lkb, the ethylene insensitive ein2 mutant and the lk ein2 double mutant, along with transgenic lines expressing the DR5::GUS auxin activity marker to investigate how brassinosteroids interact with ethylene and auxin during nodulation. We show that brassinosteroids inhibit the early stages of nodulation, including auxin accumulation, root hair deformation and infection thread formation, and demonstrate that infection thread formation is regulated by brassinosteroids in an ethylene independent manner. In contrast, brassinosteroids appear to act as promoters of nodule initiation through both an ethylene dependent and independent pathway. Although brassinosteroids positively influence the ultimate number of nodules formed, we found that brassinosteroid-deficiency did not influence nodule structure including the vascular pattern of auxin activity or nitrogen-fixation capacity. These findings suggest that brassinosteroids are negative regulators of infection but positive regulators of nodule initiation. Furthermore, brassinosteroids do not appear to be essential for nodule organogenesis or function. Given the influence of brassinosteroids on discreet stages of nodulation but not nodule function, manipulation of brassinosteroids may be an interesting avenue for future research on the optimisation of nodulation.


Subject(s)
Brassinosteroids , Ethylenes , Indoleacetic Acids , Pisum sativum , Plant Root Nodulation , Brassinosteroids/metabolism , Ethylenes/metabolism , Indoleacetic Acids/metabolism , Pisum sativum/genetics , Pisum sativum/metabolism , Plant Root Nodulation/physiology , Symbiosis
9.
Physiol Plant ; 170(1): 132-147, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32385889

ABSTRACT

The underlying mechanisms that determine whether two species can form a successful graft union (graft compatibility) remain obscure. Two prominent hypotheses are (1) the more closely related species are, the higher the graft success and (2) the vascular anatomy at the graft junction influences graft success. In this paper these two hypotheses are examined in a systematic way using graft combinations selected from a range of (a) phylogenetically close and more distant legume species, (b) species displaying different germination patterns and (c) scions and rootstocks possessing contrasting stem tissues and vascular patterns. Relatedness of species was not a good predictor of graft compatibility, as vascular reconnection can occur between distantly related species and can fail to occur in some more closely related species. Similarly, neither the stem tissues present at the graft junction nor the vascular anatomy correlated with the success of vascular reconnection. Relatedness and stem anatomy therefore do not appear to be the determining factors in successful vascular reconnection after grafting in legumes. These results are discussed in conjunction with other hypotheses such as the role of auxin.


Subject(s)
Indoleacetic Acids , Phylogeny
10.
Front Plant Sci ; 10: 269, 2019.
Article in English | MEDLINE | ID: mdl-30930916

ABSTRACT

Plant hormones play key roles in nodulation and arbuscular mycorrhizal (AM) associations. These two agriculturally and ecologically important symbioses enable plants to gain access to nutrients, in particular, nitrogen in the case of nodulation and phosphorous in the case of AM. Work over the past few decades has revealed how symbioses with nitrogen-fixing rhizobia, restricted almost exclusively to legumes, evolved in part from ancient AM symbioses formed by more than 80% of land plants. Although overlapping, these symbiotic programs also have important differences, including the de novo development of a new organ found only in nodulation. One emerging area of research is the role of two plant hormone groups, the gibberellins (GAs) and brassinosteroids (BRs), in the development and maintenance of these symbioses. In this review, we compare and contrast the roles of these hormones in the two symbioses, including potential interactions with other hormones. This not only focuses on legumes, most of which can host both symbionts, but also examines the role of these in AM development in non-legumes. GA acts by suppressing DELLA, and this regulatory module acts to negatively influence both rhizobial and mycorrhizal infection but appears to promote nodule organogenesis. While an overall positive role for BRs in nodulation and AM has been suggested by studies using mutants disrupted in BR biosynthesis or response, application studies indicate that BR may play a more complex role in nodulation. Given the nature of these symbioses, with events regulated both spatially and temporally, future studies should examine in more detail how GAs and BRs may influence precise events during these symbioses, including interactions with other hormone groups.

11.
Ann Bot ; 123(3): 429-439, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30380009

ABSTRACT

BACKGROUND: The presence of a polar auxin transport stream has long been correlated with the differentiation and patterning of vascular cells across vascular plants. As our understanding of auxin transport and vascular development has grown, so too has evidence for the correlation between these processes. However, a clear understanding of the cellular and molecular mechanisms driving this correlation has not been elucidated. SCOPE: This article examines the hypothesis that canalization via polar auxin transport regulates vascular reconnection and patterning in the stem after wounding or grafting. We examine the evidence for the causal nature of the relationship and the suggested role that other hormones may play. Data are presented indicating that in grafted plants the degree of auxin transport may not always correlate with vascular reconnection. Furthermore, data on grafting success using plants with a range of hormone-related mutations indicate that these hormones may not be critical for vascular reconnection. CONCLUSIONS: In the past, excellent work examining elements of auxin synthesis, transport and response in relation to vascular development has been carried out. However, new experimental approaches are required to test more directly the hypothesis that auxin transport regulates stem vascular reconnection after wounding or grafting. This could include studies on the timing of the re-establishment of auxin transport and vascular reconnection after grafting and the influence of auxin transport mutants and inhibitors on these processes using live imaging.


Subject(s)
Indoleacetic Acids/metabolism , Plant Development/physiology , Plant Growth Regulators/metabolism , Plant Stems/physiology , Biological Transport
12.
Front Plant Sci ; 9: 988, 2018.
Article in English | MEDLINE | ID: mdl-30042780

ABSTRACT

Plants interact with diverse microbes including those that result in nutrient-acquiring symbioses. In order to balance the energy cost with the benefit gained, plants employ a systemic negative feedback loop to control the formation of these symbioses. This is particularly well-understood in nodulation, the symbiosis between legumes and nitrogen-fixing rhizobia, and is known as autoregulation of nodulation (AON). However, much less is understood about the autoregulation of the ancient arbuscular mycorrhizal symbioses that form between Glomeromycota fungi and the majority of land plants. Elegant physiological studies in legumes have indicated there is at least some overlap in the genes and signals that regulate these two symbioses but there are major gaps in our understanding. In this paper we examine the hypothesis that the autoregulation of mycorrhizae (AOM) pathway shares some elements with AON but that there are also some important differences. By reviewing the current knowledge of the AON pathway, we have identified important directions for future AOM studies. We also provide the first genetic evidence that CLV2 (an important element of the AON pathway) influences mycorrhizal development in a non-legume, tomato and review the interaction of the autoregulation pathway with plant hormones and nutrient status. Finally, we discuss whether autoregulation may play a role in the relationships plants form with other microbes.

13.
J Exp Bot ; 69(8): 2117-2130, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29432555

ABSTRACT

Leguminous plant roots can form a symbiosis with soil-dwelling nitrogen-fixing rhizobia, leading to the formation of a new root organ, the nodule. Successful nodulation requires co-ordination of spatially separated events in the root, including infection in the root epidermis and nodule organogenesis deep in the root cortex. We show that the hormone gibberellin plays distinct roles in these epidermal and cortical programmes. We employed a unique set of genetic material in pea that includes severely gibberellin-deficient lines and della-deficient lines that enabled us to characterize all stages of infection and nodule development. We confirmed that gibberellin suppresses infection thread formation and show that it also promotes nodule organogenesis into nitrogen-fixing organs. In both cases, this is achieved through the action of DELLA proteins. This study therefore provides a mechanism to explain how both low and high gibberellin signalling can result in reduced nodule number and reveals a clear role for gibberellin in the maturation of nodules into nitrogen-fixing organs. We also demonstrate that gibberellin acts independently of ethylene in promoting nodule development.


Subject(s)
Gibberellins/metabolism , Pisum sativum/metabolism , Plant Growth Regulators/metabolism , Root Nodules, Plant/growth & development , Ethylenes/metabolism , Gene Expression Regulation, Plant , Pisum sativum/genetics , Pisum sativum/growth & development , Pisum sativum/microbiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Root Nodulation , Rhizobium/physiology , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism , Root Nodules, Plant/microbiology , Symbiosis
14.
Plant Physiol ; 175(1): 529-542, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28751316

ABSTRACT

Strigolactones (SLs) influence the ability of legumes to associate with nitrogen-fixing bacteria. In this study, we determine the precise stage at which SLs influence nodulation. We show that SLs promote infection thread formation, as a null SL-deficient pea (Pisum sativum) mutant forms significantly fewer infection threads than wild-type plants, and this reduction can be overcome by the application of the synthetic SL GR24. We found no evidence that SLs influence physical events in the plant before or after infection thread formation, since SL-deficient plants displayed a similar ability to induce root hair curling in response to rhizobia or Nod lipochitooligosaccharides (LCOs) and SL-deficient nodules appear to fix nitrogen at a similar rate to those of wild-type plants. In contrast, an SL receptor mutant displayed no decrease in infection thread formation or nodule number, suggesting that SL deficiency may influence the bacterial partner. We found that this influence of SL deficiency was not due to altered flavonoid exudation or the ability of root exudates to stimulate bacterial growth. The influence of SL deficiency on infection thread formation was accompanied by reduced expression of some early nodulation genes. Importantly, SL synthesis is down-regulated by mutations in genes of the Nod LCO signaling pathway, and this requires the downstream transcription factor NSP2 but not NIN This, together with the fact that the expression of certain SL biosynthesis genes can be elevated in response to rhizobia/Nod LCOs, suggests that Nod LCOs may induce SL biosynthesis. SLs appear to influence nodulation independently of ethylene action, as SL-deficient and ethylene-insensitive double mutant plants display essentially additive phenotypes, and we found no evidence that SLs influence ethylene synthesis or vice versa.


Subject(s)
Lactones/pharmacology , Pisum sativum/physiology , Rhizobium/physiology , Signal Transduction , Transcription Factors/metabolism , Down-Regulation , Ethylenes/metabolism , Gene Expression Regulation, Plant , Lactones/metabolism , Lipopolysaccharides/pharmacology , Mutation , Pisum sativum/drug effects , Pisum sativum/genetics , Pisum sativum/microbiology , Phenotype , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Root Nodulation/drug effects , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/microbiology , Plant Roots/physiology , Symbiosis/drug effects , Transcription Factors/genetics
15.
Nat Plants ; 2: 16114, 2016 07 25.
Article in English | MEDLINE | ID: mdl-27455172

ABSTRACT

Protein farnesylation is a post-translational modification involving the addition of a 15-carbon farnesyl isoprenoid to the carboxy terminus of select proteins(1-3). Although the roles of this lipid modification are clear in both fungal and animal signalling, many of the mechanistic functions of farnesylation in plant signalling are still unknown. Here, we show that CYP85A2, the cytochrome P450 enzyme that performs the last step in brassinosteroid biosynthesis (conversion of castasterone to brassinolide)(4), must be farnesylated to function in Arabidopsis. Loss of either CYP85A2 or CYP85A2 farnesylation results in reduced brassinolide accumulation and increased plant responsiveness to the hormone abscisic acid (ABA) and overall drought tolerance, explaining previous observations(5). This result not only directly links farnesylation to brassinosteroid biosynthesis but also suggests new strategies to maintain crop yield under challenging climatic conditions.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Brassinosteroids/biosynthesis , Cytochrome P-450 Enzyme System/metabolism , Plant Growth Regulators/metabolism , Prenylation
16.
J Exp Bot ; 67(8): 2413-24, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26889005

ABSTRACT

The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene.


Subject(s)
Brassinosteroids/metabolism , Ethylenes/metabolism , Gibberellins/metabolism , Mycorrhizae/physiology , Pisum sativum/microbiology , Rhizobium/physiology , Symbiosis , Colony Count, Microbial , Indoleacetic Acids/pharmacology , Models, Biological , Mutation/genetics , Mycorrhizae/drug effects , Organophosphorus Compounds/pharmacology , Pisum sativum/drug effects , Pisum sativum/metabolism , Phenotype , Phthalimides/pharmacology , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Root Nodulation/drug effects , Plant Roots/drug effects , Plant Roots/growth & development , Rhizobium/drug effects , Symbiosis/drug effects
17.
Planta ; 243(6): 1387-96, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26725046

ABSTRACT

MAIN CONCLUSION: Strigolactones (SLs) do not influence spore germination or hyphal growth of Fusarium oxysporum. Mutant studies revealed no role for SLs but a role for ethylene signalling in defence against this pathogen in pea. Strigolactones (SLs) play important roles both inside the plant as a hormone and outside the plant as a rhizosphere signal in interactions with mycorrhizal fungi and parasitic weeds. What is less well understood is any potential role SLs may play in interactions with disease causing microbes such as pathogenic fungi. In this paper we investigate the influence of SLs on the hemibiotrophic pathogen Fusarium oxysporum f.sp. pisi both directly via their effects on fungal growth and inside the plant through the use of a mutant deficient in SL. Given that various stereoisomers of synthetic and naturally occuring SLs can display different biological activities, we used (+)-GR24, (-)-GR24 and the naturally occurring SL, (+)-strigol, as well as a racemic mixture of 5-deoxystrigol. As a positive control, we examined the influence of a plant mutant with altered ethylene signalling, ein2, on disease development. We found no evidence that SLs influence spore germination or hyphal growth of Fusarium oxysporum and that, while ethylene signalling influences pea susceptibility to this pathogen, SLs do not.


Subject(s)
Fusarium/drug effects , Lactones/pharmacology , Pisum sativum/microbiology , Plant Growth Regulators/pharmacology , Biosynthetic Pathways/genetics , Disease Susceptibility , Ethylenes/metabolism , Ethylenes/pharmacology , Fusarium/metabolism , Fusarium/physiology , Germination/drug effects , Lactones/metabolism , Mutation , Pisum sativum/genetics , Pisum sativum/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Roots/metabolism , Plant Roots/microbiology
18.
Mol Plant Pathol ; 17(5): 680-90, 2016 06.
Article in English | MEDLINE | ID: mdl-26377026

ABSTRACT

Plant hormones play key roles in defence against pathogen attack. Recent work has begun to extend this role to encompass not just the traditional disease/stress hormones, such as ethylene, but also growth-promoting hormones. Strigolactones (SLs) are the most recently defined group of plant hormones with important roles in plant-microbe interactions, as well as aspects of plant growth and development, although the knowledge of their role in plant-pathogen interactions is extremely limited. The oomycete Pythium irregulare is a poorly controlled pathogen of many crops. Previous work has indicated an important role for ethylene in defence against this oomycete. We examined the role of ethylene and SLs in response to this pathogen in pea (Pisum sativum L.) at the molecular and whole-plant levels using a set of well-characterized hormone mutants, including an ethylene-insensitive ein2 mutant and SL-deficient and insensitive mutants. We identified a key role for ethylene signalling in specific cell types that reduces pathogen invasion, extending the work carried out in other species. However, we found no evidence that SL biosynthesis or response influences the interaction of pea with P. irregulare or that synthetic SL influences the growth or hyphal branching of the oomycete in vitro. Future work should seek to extend our understanding of the role of SLs in other plant interactions, including with other fungal, bacterial and viral pathogens, nematodes and insect pests.


Subject(s)
Ethylenes/metabolism , Lactones/metabolism , Plant Diseases/microbiology , Pythium/physiology , Biosynthetic Pathways/genetics , Gene Expression Regulation, Plant , Genes, Plant , Hyphae/growth & development , Mutation/genetics , Pisum sativum/genetics , Pisum sativum/microbiology , Plant Diseases/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/microbiology , Spores/physiology
19.
New Phytol ; 210(2): 643-56, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26661110

ABSTRACT

The role of shoot-root signals in the control of nodulation and arbuscular mycorrhizal (AM) development were examined in the divergent legume species pea and blue lupin. These species were chosen as pea can host both symbionts, whereas lupin can nodulate but has lost the ability to form AM. Intergeneric grafts between lupin and pea enabled examination of key long-distance signals in these symbioses. The role of strigolactones, auxin and elements of the autoregulation of nodulation (AON) pathway were investigated. Grafting studies were combined with loss-of-function mutants to monitor symbioses (nodulation, AM) and hormone effects (levels, gene expression and application studies). Lupin shoots suppress AM colonization in pea roots, in part by downregulating strigolactone exudation involving reduced expression of the strigolactone biosynthesis gene PsCCD8. By contrast, lupin shoots enhance pea nodulation, independently of strigolactones, possibly due to a partial incompatibility in AON shoot-root signalling between pea and lupin. This study highlights that nodulation and AM symbioses can be regulated independently and this may be due to long-distance signals, a phenomenon we were able to uncover by working with divergent legumes. We also identify a role for strigolactone exudation in determining the status of non-AM hosts.


Subject(s)
Lupinus/metabolism , Pisum sativum/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Signal Transduction , Symbiosis , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Lactones/metabolism , Lupinus/genetics , Lupinus/microbiology , Models, Biological , Mycorrhizae/physiology , Pisum sativum/genetics , Pisum sativum/microbiology , Plant Root Nodulation , Plant Roots/microbiology , Plants, Genetically Modified , Tritium
20.
Plant Physiol ; 169(1): 115-24, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25792252

ABSTRACT

Plant responses to light involve a complex network of interactions among multiple plant hormones. In a screen for mutants showing altered photomorphogenesis under red light, we identified a mutant with dramatically enhanced leaf expansion and delayed petal senescence. We show that this mutant exhibits reduced sensitivity to ethylene and carries a nonsense mutation in the single pea (Pisum sativum) ortholog of the ethylene signaling gene ETHYLENE INSENSITIVE2 (EIN2). Consistent with this observation, the ein2 mutation rescues the previously described effects of ethylene overproduction in mature phytochrome-deficient plants. In seedlings, ein2 confers a marked increase in leaf expansion under monochromatic red, far-red, or blue light, and interaction with phytochromeA, phytochromeB, and long1 mutants confirms that ein2 enhances both phytochrome- and cryptochrome-dependent responses in a LONG1-dependent manner. In contrast, minimal effects of ein2 on seedling development in darkness or high-irradiance white light show that ethylene is not limiting for development under these conditions. These results indicate that ethylene signaling constrains leaf expansion during deetiolation in pea and provide further evidence that down-regulation of ethylene production may be an important component mechanism in the broader control of photomorphogenic development by phytochrome and cryptochrome.


Subject(s)
Ethylenes/metabolism , Phytochrome/metabolism , Pisum sativum/physiology , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Cryptochromes/metabolism , Darkness , Down-Regulation , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Light , Molecular Sequence Data , Mutation , Pisum sativum/genetics , Pisum sativum/growth & development , Pisum sativum/radiation effects , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Proteins/genetics , Seedlings/genetics , Seedlings/growth & development , Seedlings/physiology , Seedlings/radiation effects , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL