Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 419
Filter
1.
bioRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38766029

ABSTRACT

Bacteria and phages are locked in a co-evolutionary arms race where each entity evolves mechanisms to restrict the proliferation of the other. Phage-encoded defense inhibitors have proven powerful tools to interrogate how defense systems function. A relatively common defense system is BREX (Bacteriophage exclusion); however, how BREX functions to restrict phage infection remains poorly understood. A BREX system encoded by the SXT integrative and conjugative element, Vch Ind5, was recently identified in Vibrio cholerae , the causative agent of the diarrheal disease cholera. The lytic phage ICP1 that co-circulates with V. cholerae encodes the BREX inhibitor OrbA, but how OrbA inhibits BREX is unclear. Here, we determine that OrbA inhibits BREX using a unique mechanism from known BREX inhibitors by directly binding to the BREX component BrxC. BrxC has a functional ATPase domain that, when mutated, not only disrupts BrxC function but also alters how BrxC multimerizes. Furthermore, we find that OrbA binding disrupts BrxC-BrxC interactions. We determine that OrbA cannot bind BrxC encoded by the distantly related BREX system encoded by the SXT Vch Ban9, and thus fails to inhibit this BREX system that also circulates in epidemic V. cholerae . Lastly, we find that homologs of the Vch Ind5 BrxC are more diverse than the homologs of the Vch Ban9 BrxC. These data provide new insight into the function of the BrxC ATPase and highlight how phage-encoded inhibitors can disrupt phage defense systems using different mechanisms. Importance: With renewed interest in phage therapy to combat antibiotic-resistant pathogens, understanding the mechanisms bacteria use to defend themselves against phages and the counter-strategies phages evolve to inhibit defenses is paramount. Bacteriophage exclusion (BREX) is a common defense system with few known inhibitors. Here, we probe how the vibriophage-encoded inhibitor OrbA inhibits the BREX system of Vibrio cholerae , the causative agent of the diarrheal disease cholera. By interrogating OrbA function, we have begun to understand the importance and function of a BREX component. Our results demonstrate the importance of identifying inhibitors against defense systems, as they are powerful tools for dissecting defense activity and can inform strategies to increase the efficacy of some phage therapies.

2.
NPJ Breast Cancer ; 10(1): 37, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802426

ABSTRACT

Triple negative breast cancer (TNBC) accounts for 15-20% of breast cancer cases in the United States. Systemic neoadjuvant chemotherapy (NACT), with or without immunotherapy, is the current standard of care for patients with early-stage TNBC. However, up to 70% of TNBC patients have significant residual disease once NACT is completed, which is associated with a high risk of developing recurrence within two to three years of surgical resection. To identify targetable vulnerabilities in chemoresistant TNBC, we generated longitudinal patient-derived xenograft (PDX) models from TNBC tumors before and after patients received NACT. We then compiled transcriptomes and drug response profiles for all models. Transcriptomic analysis identified the enrichment of aberrant protein homeostasis pathways in models from post-NACT tumors relative to pre-NACT tumors. This observation correlated with increased sensitivity in vitro to inhibitors targeting the proteasome, heat shock proteins, and neddylation pathways. Pevonedistat, a drug annotated as a NEDD8-activating enzyme (NAE) inhibitor, was prioritized for validation in vivo and demonstrated efficacy as a single agent in multiple PDX models of TNBC. Pharmacotranscriptomic analysis identified a pathway-level correlation between pevonedistat activity and post-translational modification (PTM) machinery, particularly involving neddylation and sumoylation targets. Elevated levels of both NEDD8 and SUMO1 were observed in models exhibiting a favorable response to pevonedistat compared to those with a less favorable response in vivo. Moreover, a correlation emerged between the expression of neddylation-regulated pathways and tumor response to pevonedistat, indicating that targeting these PTM pathways may prove effective in combating chemoresistant TNBC.

3.
Int J Mol Sci ; 25(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38279277

ABSTRACT

Endometrial cancer is the most frequent malignant tumor of the female reproductive tract but lacks effective therapy. EphA2, a receptor tyrosine kinase, is overexpressed by various cancers including endometrial cancer and is associated with poor clinical outcomes. In preclinical models, EphA2-targeted drugs had modest efficacy. To discover potential synergistic partners for EphA2-targeted drugs, we performed a high-throughput drug screen and identified panobinostat, a histone deacetylase inhibitor, as a candidate. We hypothesized that combination therapy with an EphA2 inhibitor and panobinostat leads to synergistic cell death. Indeed, we found that the combination enhanced DNA damage, increased apoptosis, and decreased clonogenic survival in Ishikawa and Hec1A endometrial cancer cells and significantly reduced tumor burden in mouse models of endometrial carcinoma. Upon RNA sequencing, the combination was associated with downregulation of cell survival pathways, including senescence, cyclins, and cell cycle regulators. The Axl-PI3K-Akt-mTOR pathway was also decreased by combination therapy. Together, our results highlight EphA2 and histone deacetylase as promising therapeutic targets for endometrial cancer.


Subject(s)
Endometrial Neoplasms , Histone Deacetylase Inhibitors , Receptor, EphA2 , Animals , Female , Humans , Mice , Apoptosis , Cell Line, Tumor , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Histone Deacetylase Inhibitors/therapeutic use , Panobinostat/pharmacology , Panobinostat/therapeutic use , Phosphatidylinositol 3-Kinases , Molecular Targeted Therapy , Receptor, EphA2/antagonists & inhibitors
4.
Contemp Clin Trials ; 134: 107335, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37730197

ABSTRACT

INTRODUCTION: Unlike other U.S. geographical regions, cigarette smoking prevalence remains stagnant in rural Appalachia. One avenue for reaching rural residents with evidence-based smoking cessation treatments could be utilizing community pharmacists. This paper describes the design, rationale, and analysis plan for a mixed-method study that will determine combinations of cessation treatment components that can be integrated within community pharmacies in rural Appalachia. The aim is to quantify the individual and synergistic effects of five highly disseminable and sustainable cessation components in a factorial experiment. METHODS: This sequential, mixed-method research design, based on the RE-AIM (Reach, Effectiveness, Adoption, Implementation, and Maintenance) framework, will use a randomized controlled trial with a 25 fully crossed factorial design (32 treatment combinations) to test, alone and in combination, the most effective evidence-based cessation components: (1) QuitAid (yes vs. no) (2) tobacco quit line (yes vs. no) (3) SmokefreeTXT (yes vs. no) (4) combination NRT lozenge + NRT patch (vs. NRT patch alone), and (5) eight weeks of NRT (vs. standard four weeks). RESULTS: Logistic regression will model abstinence at six-months, including indicators for the five treatment factors and all two-way interactions between the treatment factors. Demographic and smoking history variables will be considered to assess potential effect modification. Poisson regression will model quit attempts and percent of adherence to treatment components as secondary outcomes. CONCLUSION: This study will provide foundational evidence on how community pharmacies in medically underserved, rural regions can be leveraged to increase utilization of existing evidence-based tobacco cessation resources for treating tobacco dependence. CLINICAL TRIALS: NCT05660525.


Subject(s)
Cigarette Smoking , Pharmacy , Smoking Cessation , Humans , Adult , Nicotine/therapeutic use , Smoking Cessation/methods , Tobacco Use Cessation Devices
5.
Blood ; 142(12): 1056-1070, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37339579

ABSTRACT

TP 53-mutant acute myeloid leukemia (AML) remains the ultimate therapeutic challenge. Epichaperomes, formed in malignant cells, consist of heat shock protein 90 (HSP90) and associated proteins that support the maturation, activity, and stability of oncogenic kinases and transcription factors including mutant p53. High-throughput drug screening identified HSP90 inhibitors as top hits in isogenic TP53-wild-type (WT) and -mutant AML cells. We detected epichaperomes in AML cells and stem/progenitor cells with TP53 mutations but not in healthy bone marrow (BM) cells. Hence, we investigated the therapeutic potential of specifically targeting epichaperomes with PU-H71 in TP53-mutant AML based on its preferred binding to HSP90 within epichaperomes. PU-H71 effectively suppressed cell intrinsic stress responses and killed AML cells, primarily by inducing apoptosis; targeted TP53-mutant stem/progenitor cells; and prolonged survival of TP53-mutant AML xenograft and patient-derived xenograft models, but it had minimal effects on healthy human BM CD34+ cells or on murine hematopoiesis. PU-H71 decreased MCL-1 and multiple signal proteins, increased proapoptotic Bcl-2-like protein 11 levels, and synergized with BCL-2 inhibitor venetoclax in TP53-mutant AML. Notably, PU-H71 effectively killed TP53-WT and -mutant cells in isogenic TP53-WT/TP53-R248W Molm13 cell mixtures, whereas MDM2 or BCL-2 inhibition only reduced TP53-WT but favored the outgrowth of TP53-mutant cells. Venetoclax enhanced the killing of both TP53-WT and -mutant cells by PU-H71 in a xenograft model. Our data suggest that epichaperome function is essential for TP53-mutant AML growth and survival and that its inhibition targets mutant AML and stem/progenitor cells, enhances venetoclax activity, and prevents the outgrowth of venetoclax-resistant TP53-mutant AML clones. These concepts warrant clinical evaluation.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Animals , Mice , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins c-bcl-2 , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Apoptosis , Stem Cells/metabolism , Cell Line, Tumor
6.
Mol Cancer Ther ; 22(8): 962-975, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37310170

ABSTRACT

Mutations in KRAS are found in more than 50% of tumors from patients with metastatic colorectal cancer (mCRC). However, direct targeting of most KRAS mutations is difficult; even the recently developed KRASG12C inhibitors failed to show significant benefit in patients with mCRC. Single agents targeting mitogen-activated protein kinase kinase (MEK), a downstream mediator of RAS, have also been ineffective in colorectal cancer. To identify drugs that can enhance the efficacy of MEK inhibitors, we performed unbiased high-throughput screening using colorectal cancer spheroids. We used trametinib as the anchor drug and examined combinations of trametinib with the NCI-approved Oncology Library version 5. The initial screen, and following focused validation screens, identified vincristine as being strongly synergistic with trametinib. In vitro, the combination strongly inhibited cell growth, reduced clonogenic survival, and enhanced apoptosis compared with monotherapies in multiple KRAS-mutant colorectal cancer cell lines. Furthermore, this combination significantly inhibited tumor growth, reduced cell proliferation, and increased apoptosis in multiple KRAS-mutant patient-derived xenograft mouse models. In vivo studies using drug doses that reflect clinically achievable doses demonstrated that the combination was well tolerated by mice. We further determined that the mechanism underlying the synergistic effect of the combination was due to enhanced intracellular accumulation of vincristine associated with MEK inhibition. The combination also significantly decreased p-mTOR levels in vitro, indicating that it inhibits both RAS-RAF-MEK and PI3K-AKT-mTOR survival pathways. Our data thus provide strong evidence that the combination of trametinib and vincristine represents a novel therapeutic option to be studied in clinical trials for patients with KRAS-mutant mCRC. SIGNIFICANCE: Our unbiased preclinical studies have identified vincristine as an effective combination partner for the MEK inhibitor trametinib and provide a novel therapeutic option to be studied in patients with KRAS-mutant colorectal cancer.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Mitogen-Activated Protein Kinase Kinases , Vincristine , Animals , Humans , Mice , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mutation , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , TOR Serine-Threonine Kinases/metabolism , Vincristine/pharmacology , Vincristine/therapeutic use
7.
Br J Cancer ; 128(11): 2013-2024, 2023 06.
Article in English | MEDLINE | ID: mdl-37012319

ABSTRACT

BACKGROUND: Cisplatin (CDDP) is a mainstay treatment for advanced head and neck squamous cell carcinomas (HNSCC) despite a high frequency of innate and acquired resistance. We hypothesised that tumours acquire CDDP resistance through an enhanced reductive state dependent on metabolic rewiring. METHODS: To validate this model and understand how an adaptive metabolic programme might be imprinted, we performed an integrated analysis of CDDP-resistant HNSCC clones from multiple genomic backgrounds by whole-exome sequencing, RNA-seq, mass spectrometry, steady state and flux metabolomics. RESULTS: Inactivating KEAP1 mutations or reductions in KEAP1 RNA correlated with Nrf2 activation in CDDP-resistant cells, which functionally contributed to resistance. Proteomics identified elevation of downstream Nrf2 targets and the enrichment of enzymes involved in generation of biomass and reducing equivalents, metabolism of glucose, glutathione, NAD(P), and oxoacids. This was accompanied by biochemical and metabolic evidence of an enhanced reductive state dependent on coordinated glucose and glutamine catabolism, associated with reduced energy production and proliferation, despite normal mitochondrial structure and function. CONCLUSIONS: Our analysis identified coordinated metabolic changes associated with CDDP resistance that may provide new therapeutic avenues through targeting of these convergent pathways.


Subject(s)
Antineoplastic Agents , Head and Neck Neoplasms , Humans , Cisplatin/metabolism , Squamous Cell Carcinoma of Head and Neck , Kelch-Like ECH-Associated Protein 1/genetics , NF-E2-Related Factor 2/genetics , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Glucose , Antineoplastic Agents/pharmacology
8.
Int J Mol Sci ; 24(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36835335

ABSTRACT

EphA2 tyrosine kinase is upregulated in many cancers and correlated with poor survival of patients, including those with endometrial cancer. EphA2-targeted drugs have shown modest clinical benefit. To improve the therapeutic response to such drugs, we performed a high-throughput chemical screen to discover novel synergistic partners for EphA2-targeted therapeutics. Our screen identified the Wee1 kinase inhibitor, MK1775, as a synergistic partner to EphA2, and this finding was confirmed using both in vitro and in vivo experiments. We hypothesized that Wee1 inhibition would sensitize cells to EphA2-targeted therapy. Combination treatment decreased cell viability, induced apoptosis, and reduced clonogenic potential in endometrial cancer cell lines. In vivo Hec1A and Ishikawa-Luc orthotopic mouse models of endometrial cancer showed greater anti-tumor responses to combination treatment than to either monotherapy. RNASeq analysis highlighted reduced cell proliferation and defective DNA damage response pathways as potential mediators of the combination's effects. In conclusion, our preclinical findings indicate that Wee1 inhibition can enhance the response to EphA2-targeted therapeutics in endometrial cancer; this strategy thus warrants further development.


Subject(s)
Antineoplastic Agents , Endometrial Neoplasms , Molecular Targeted Therapy , Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Receptor, EphA2 , Animals , Female , Humans , Mice , Antineoplastic Agents/therapeutic use , Apoptosis , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation , Endometrial Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor, EphA2/antagonists & inhibitors
9.
Sci Total Environ ; 855: 158894, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36155045

ABSTRACT

The tributaries flowing through Leamington, Ontario are unique in the Canadian Lake Erie watershed due to the broad spatial extent of greenhouse operations, which more than doubled in size and density from 2011 to 2022. These greenhouse operations are considered to be potential nutrient point sources with respect to observed nutrient concentrations in tributaries adjacent to greenhouse stormwater retention ponds (GSWPs). Identifying causal factors of nutrient release, whether this be chemical or biological, within these ponds may be critical for mitigating their impact on the watershed and ultimately the receiving waters of Lake Erie. Specifically, phosphorus and nitrogen accumulation in freshwater ponds can contribute to environmental damage proximal to adjacent streams, serving as a potential catalyst for algal blooms and eutrophication. This study compared correlations between the water column N:P stoichiometry, sediment nutrient retention capacity, and drivers of microbial metabolism within GSWP sediments. Correlations between water column TN:TP ratios and sediment nutrient retention capacity were observed, suggesting an interplay between N and P in terms of nutrient limitation. Further, clear shifts were observed in the bacterial metabolic pathways analyzed through metatranscriptomics. Specifically, genes related to nitrogen fixation, nitrification and denitrification, and other metabolic processes involving sulfur and methane showed differential expression depending on the condition of the respective pond (i.e., naturalized wetland vs. dredged, eutrophic pond). Collectively, this research serves to highlight the interconnected role of chemical-biological processes particularly as they relate to significant ecosystem processes such as nutrient loading and retention dynamics in impaired freshwater systems.


Subject(s)
Ponds , Water Pollutants, Chemical , Ontario , Ecosystem , Water Pollutants, Chemical/analysis , Phosphorus/analysis , Nitrogen/analysis , Lakes , Nutrients , Water , Environmental Monitoring
10.
Front Pharmacol ; 13: 1049640, 2022.
Article in English | MEDLINE | ID: mdl-36561339

ABSTRACT

Drug repurposing can overcome both substantial costs and the lengthy process of new drug discovery and development in cancer treatment. Some Food and Drug Administration (FDA)-approved drugs have been found to have the potential to be repurposed as anti-cancer drugs. However, the progress is slow due to only a handful of strategies employed to identify drugs with repurposing potential. In this study, we evaluated GPCR-targeting drugs by high throughput screening (HTS) for their repurposing potential in triple-negative breast cancer (TNBC) and drug-resistant human epidermal growth factor receptor-2-positive (HER2+) breast cancer (BC), due to the dire need to discover novel targets and drugs in these subtypes. We assessed the efficacy and potency of drugs/compounds targeting different GPCRs for the growth rate inhibition in the following models: two TNBC cell lines (MDA-MB-231 and MDA-MB-468) and two HER2+ BC cell lines (BT474 and SKBR3), sensitive or resistant to lapatinib + trastuzumab, an effective combination of HER2-targeting therapies. We identified six drugs/compounds as potential hits, of which 4 were FDA-approved drugs. We focused on ß-adrenergic receptor-targeting nebivolol as a candidate, primarily because of the potential role of these receptors in BC and its excellent long-term safety profile. The effects of nebivolol were validated in an independent assay in all the cell line models. The effects of nebivolol were independent of its activation of ß3 receptors and nitric oxide production. Nebivolol reduced invasion and migration potentials which also suggests its inhibitory role in metastasis. Analysis of the Surveillance, Epidemiology and End Results (SEER)-Medicare dataset found numerically but not statistically significant reduced risk of all-cause mortality in the nebivolol group. In-depth future analyses, including detailed in vivo studies and real-world data analysis with more patients, are needed to further investigate the potential of nebivolol as a repurposed therapy for BC.

11.
Sci Rep ; 12(1): 16109, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36168036

ABSTRACT

Computational models have been successful in predicting drug sensitivity in cancer cell line data, creating an opportunity to guide precision medicine. However, translating these models to tumors remains challenging. We propose a new transfer learning workflow that transfers drug sensitivity predicting models from large-scale cancer cell lines to both tumors and patient derived xenografts based on molecular pathways derived from genomic features. We further compute feature importance to identify pathways most important to drug response prediction. We obtained good performance on tumors (AUROC = 0.77) and patient derived xenografts from triple negative breast cancers (RMSE = 0.11). Using feature importance, we highlight the association between ER-Golgi trafficking pathway in everolimus sensitivity within breast cancer patients and the role of class II histone deacetylases and interlukine-12 in response to drugs for triple-negative breast cancer. Pathway information support transfer of drug response prediction models from cell lines to tumors and can provide biological interpretation underlying the predictions, serving as a steppingstone towards usage in clinical setting.


Subject(s)
Everolimus , Triple Negative Breast Neoplasms , Cell Line , Cell Line, Tumor , Heterografts , Histone Deacetylases , Humans , Machine Learning , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics
12.
Nucleic Acids Res ; 50(16): 9548-9567, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36039764

ABSTRACT

The AP1 transcription factor ΔFOSB, a splice variant of FOSB, accumulates in the brain in response to chronic insults such as exposure to drugs of abuse, depression, Alzheimer's disease and tardive dyskinesias, and mediates subsequent long-term neuroadaptations. ΔFOSB forms heterodimers with other AP1 transcription factors, e.g. JUND, that bind DNA under control of a putative cysteine-based redox switch. Here, we reveal the structural basis of the redox switch by determining a key missing crystal structure in a trio, the ΔFOSB/JUND bZIP domains in the reduced, DNA-free form. Screening a cysteine-focused library containing 3200 thiol-reactive compounds, we identify specific compounds that target the redox switch, validate their activity biochemically and in cell-based assays, and show that they are well tolerated in different cell lines despite their general potential to bind to cysteines covalently. A crystal structure of the ΔFOSB/JUND bZIP domains in complex with a redox-switch-targeting compound reveals a deep compound-binding pocket near the DNA-binding site. We demonstrate that ΔFOSB, and potentially other, related AP1 transcription factors, can be targeted specifically and discriminately by exploiting unique structural features such as the redox switch and the binding partner to modulate biological function despite these proteins previously being thought to be undruggable.


Subject(s)
Cysteine , Proto-Oncogene Proteins c-fos , Proto-Oncogene Proteins c-fos/metabolism , Cysteine/genetics , Cysteine/metabolism , Gene Expression Regulation , DNA/genetics , DNA/metabolism , Oxidation-Reduction , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism
13.
Clin Cancer Res ; 28(20): 4479-4493, 2022 10 14.
Article in English | MEDLINE | ID: mdl-35972731

ABSTRACT

PURPOSE: Human papillomavirus (HPV) causes >5% of cancers, but no therapies uniquely target HPV-driven cancers. EXPERIMENTAL DESIGN: We tested the cytotoxic effect of 864 drugs in 16 HPV-positive and 17 HPV-negative human squamous cancer cell lines. We confirmed apoptosis in vitro and in vivo using patient-derived xenografts. Mitotic pathway components were manipulated with drugs, knockdown, and overexpression. RESULTS: Aurora kinase inhibitors were more effective in vitro and in vivo in HPV-positive than in HPV-negative models. We hypothesized that the mechanism of sensitivity involves retinoblastoma (Rb) expression because the viral oncoprotein E7 leads to Rb protein degradation, and basal Rb protein expression correlates with Aurora inhibition-induced apoptosis. Manipulating Rb directly, or by inducing E7 expression, altered cells' sensitivity to Aurora kinase inhibitors. Rb affects expression of the mitotic checkpoint genes MAD2L1 and BUB1B, which we found to be highly expressed in HPV-positive patient tumors. Knockdown of MAD2L1 or BUB1B reduced Aurora kinase inhibition-induced apoptosis, whereas depletion of the MAD2L1 regulator TRIP13 enhanced it. TRIP13 is a potentially druggable AAA-ATPase. Combining Aurora kinase inhibition with TRIP13 depletion led to extensive apoptosis in HPV-positive cancer cells but not in HPV-negative cancer cells. CONCLUSIONS: Our data support a model in which HPV-positive cancer cells maintain a balance of MAD2L1 and TRIP13 to allow mitotic exit and survival in the absence of Rb. Because it does not affect cells with intact Rb function, this novel combination may have a wide therapeutic window, enabling the effective treatment of Rb-deficient cancers.


Subject(s)
Alphapapillomavirus , Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/pharmacology , ATPases Associated with Diverse Cellular Activities/therapeutic use , Adenosine Triphosphatases , Apoptosis , Aurora Kinases/metabolism , Aurora Kinases/therapeutic use , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Female , Humans , Oncogene Proteins, Viral/genetics , Papillomaviridae/genetics , Papillomavirus E7 Proteins/genetics , Papillomavirus Infections/complications , Papillomavirus Infections/drug therapy , Papillomavirus Infections/genetics , Retinoblastoma Protein/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology
14.
SLAS Discov ; 27(3): 175-184, 2022 04.
Article in English | MEDLINE | ID: mdl-35314378

ABSTRACT

High-throughput viability screens are commonly used in the identification and development of chemotherapeutic drugs. These systems rely on the fidelity of the cellular model systems to recapitulate the drug response that occurs in vivo. In recent years, there has been an expansion in the utilization of patient-derived materials as well as advanced cell culture techniques, such as multi-cellular tumor organoids, to further enhance the translational relevance of cellular model systems. Simple quantitative analysis remains a challenge, primarily due to the difficulties of robust image segmentation in heterogenous 3D cultures. However, explicit segmentation is not required with the advancement of deep learning, and it can be used for both continuous (regression) or categorical classification problems. Deep learning approaches are additionally benefited by being fully data-driven and highly automatable, thus they can be established and run with minimal to no user-defined parameters. In this article, we describe the development and implementation of a regressive deep learning model trained on brightfield images of patient-derived organoids and use the terminal viability readout (CellTiter-Glo) as training labels. Ultimately, this has led to the generation of a non-invasive and label-free tool to evaluate changes in organoid viability.


Subject(s)
Cell Culture Techniques , Organoids , Cell Survival , Humans
15.
Ultrasound Obstet Gynecol ; 59(5): 668-676, 2022 05.
Article in English | MEDLINE | ID: mdl-34533862

ABSTRACT

OBJECTIVES: To apply the International Ovarian Tumor Analysis (IOTA) Simple Rules (SR), the IOTA Simple Rules risk assessment (SRR), the IOTA Assessment of Different NEoplasias in the adneXa (ADNEX) model and the Ovarian-Adnexal Reporting and Data System (O-RADS) in the same cohort of North American patients and to compare their performance in preoperative discrimination between benign and malignant adnexal lesions. METHODS: This was a single-center diagnostic accuracy study, performed between March 2018 and February 2021, which included 150 women with an adnexal lesion. Using the ADNEX model, lesions were classified prospectively, whereas the SR, SRR assessment and O-RADS were applied retrospectively. Surgery with histological analysis was performed within 6 months of the ultrasound exam. Sensitivity and specificity were determined for each testing modality and the performance of the different modalities was compared. RESULTS: Of the 150 women, 110 (73.3%) had a benign ovarian tumor and 40 (26.7%) had a malignant tumor. The mean risk of malignancy generated by the ADNEX model without CA 125 was significantly higher in malignant vs benign lesions (63.3% vs 11.8%) and the area under the receiver-operating-characteristics curve (AUC) of the ADNEX model for differentiating between benign and malignant adnexal masses at the time of ultrasound examination was 0.937. The mean risk of malignancy generated by SRR assessment was also significantly higher in malignant vs benign lesions (74.1% vs 15.9%) and the AUC was 0.941. To compare the ADNEX model, SRR assessment and O-RADS, the malignancy risk threshold was set at ≥ 10%. This cut-off differentiates O-RADS low-risk categories (Category ≤ 3) from intermediate-to-high-risk categories (Categories 4 and 5). At this cut-off, the sensitivity of the ADNEX model was 97.5% (95% CI, 85.3%-99.9%) and the specificity was 63.6% (95% CI, 53.9%-72.4%), and, for the SRR model, the sensitivity was 100% (95% CI, 89.1%-100%) and the specificity was 51.8% (95% CI, 42.1%-61.4%). In the 113 cases to which the SR could be applied, the sensitivity was 100% (95% CI, 81.5%-100%) and the specificity was 95.6% (95% CI, 88.5%-98.6%). If the remaining 37 cases, which were inconclusive under SR, were designated 'malignant', the sensitivity remained at 100% but the specificity was reduced to 79.1% (95% CI, 70.1%-86.0%). The 150 cases fell into the following O-RADS categories: 17 (11.3%) lesions in Category 2, 34 (22.7%) in Category 3, 66 (44.0%) in Category 4 and 33 (22.0%) in Category 5. There were no histologically proven malignant lesions in Category 2 or 3. There were 14 malignant lesions in Category 4 and 26 in Category 5. The sensitivity of O-RADS using a malignancy risk threshold of ≥ 10% was 100% (95% CI, 89.1%-100.0%) and the specificity was 46.4% (95% CI, 36.9%-56.1%). CONCLUSIONS: When IOTA terms and techniques are used, the performance of IOTA models in a North American patient population is in line with published IOTA results in other populations. The IOTA SR, SRR assessment and ADNEX model and O-RADS have similar sensitivity in the preoperative discrimination of malignant from benign pelvic tumors; however, the IOTA models have higher specificity and the algorithm does not require the use of magnetic resonance imaging. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.


Subject(s)
Adnexal Diseases , Ovarian Neoplasms , Adnexal Diseases/pathology , Diagnosis, Differential , Female , Humans , Male , North America , Ovarian Neoplasms/pathology , Retrospective Studies , Risk Assessment , Sensitivity and Specificity , Ultrasonography/methods
16.
iScience ; 24(11): 103227, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34712924

ABSTRACT

Transcription is a highly regulated sequence of stochastic processes utilizing many regulators, including nuclear receptors (NR) that respond to stimuli. Endocrine disrupting chemicals (EDCs) in the environment can compete with natural ligands for nuclear receptors to alter transcription. As nuclear dynamics can be tightly linked to transcription, it is important to determine how EDCs affect NR mobility. We use an EPA-assembled set of 45 estrogen receptor-α (ERα) ligands and EDCs in our engineered PRL-Array model to characterize their effect upon transcription using fluorescence in situ hybridization and fluorescence recovery after photobleaching (FRAP). We identified 36 compounds that target ERα-GFP to a transcriptionally active, visible locus. Using a novel method for multi-region FRAP analysis we find a strong negative correlation between ERα mobility and inverse agonists. Our findings indicate that ERα mobility is not solely tied to transcription but affected highly by the chemical class binding the receptor.

17.
Mol Cancer Ther ; 20(12): 2352-2361, 2021 12.
Article in English | MEDLINE | ID: mdl-34583979

ABSTRACT

CRM1 inhibitors have demonstrated antitumor effects in ovarian and other cancers; however, rational combinations are largely unexplored. We performed a high-throughput drug library screen to identify drugs that might combine well with selinexor in ovarian cancer. Next, we tested the combination of selinexor with the top hit from the drug screen in vitro and in vivo Finally, we assessed for mechanisms underlying the identified synergy using reverse phase protein arrays (RPPA). The drug library screen assessing 688 drugs identified olaparib (a PARP inhibitor) as the most synergistic combination with selinexor. Synergy was further demonstrated by MTT assays. In the A2780luc ip1 mouse model, the combination of selinexor and olaparib yielded significantly lower tumor weight and fewer tumor nodules compared with the control group (P < 0.04 and P < 0.03). In the OVCAR5 mouse model, the combination yielded significantly fewer nodules (P = 0.006) and markedly lower tumor weight compared with the control group (P = 0.059). RPPA analysis indicated decreased expression of DNA damage repair proteins and increased expression of tumor suppressor proteins in the combination treatment group. Collectively, our preclinical findings indicate that combination with selinexor to expand the utility and efficacy of PARP inhibitors in ovarian cancer warrants further exploration.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , High-Throughput Screening Assays/methods , Hydrazines/therapeutic use , Ovarian Neoplasms/drug therapy , Phthalazines/therapeutic use , Piperazines/therapeutic use , Triazoles/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Hydrazines/pharmacology , Mice , Mice, Nude , Ovarian Neoplasms/pathology , Phthalazines/pharmacology , Piperazines/pharmacology , Triazoles/pharmacology
18.
Nat Commun ; 12(1): 5389, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34508101

ABSTRACT

Conditional overexpression of histone reader Tripartite motif containing protein 24 (TRIM24) in mouse mammary epithelia (Trim24COE) drives spontaneous development of mammary carcinosarcoma tumors, lacking ER, PR and HER2. Human carcinosarcomas or metaplastic breast cancers (MpBC) are a rare, chemorefractory subclass of triple-negative breast cancers (TNBC). Comparison of Trim24COE metaplastic carcinosarcoma morphology, TRIM24 protein levels and a derived Trim24COE gene signature reveals strong correlation with human MpBC tumors and MpBC patient-derived xenograft (PDX) models. Global and single-cell tumor profiling reveal Met as a direct oncogenic target of TRIM24, leading to aberrant PI3K/mTOR activation. Here, we find that pharmacological inhibition of these pathways in primary Trim24COE tumor cells and TRIM24-PROTAC treatment of MpBC TNBC PDX tumorspheres decreased cellular viability, suggesting potential in therapeutically targeting TRIM24 and its regulated pathways in TRIM24-expressing TNBC.


Subject(s)
Carcinosarcoma/genetics , Carrier Proteins/genetics , Mammary Neoplasms, Experimental/genetics , Nuclear Proteins/genetics , Transcription Factors/genetics , Triple Negative Breast Neoplasms/genetics , Animals , Breast/pathology , Carcinosarcoma/pathology , Carrier Proteins/metabolism , Clinical Trials as Topic , Female , Gene Expression Regulation, Neoplastic , Humans , Mammary Glands, Animal/pathology , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Transgenic , Nuclear Proteins/metabolism , Primary Cell Culture , Proto-Oncogene Proteins c-met/genetics , RNA-Seq , Single-Cell Analysis , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/pathology , Whole Genome Sequencing , Xenograft Model Antitumor Assays
20.
Nat Commun ; 12(1): 4262, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253738

ABSTRACT

The epithelial-mesenchymal transition (EMT) has been implicated in conferring stem cell properties and therapeutic resistance to cancer cells. Therefore, identification of drugs that can reprogram EMT may provide new therapeutic strategies. Here, we report that cells derived from claudin-low mammary tumors, a mesenchymal subtype of triple-negative breast cancer, exhibit a distinctive organoid structure with extended "spikes" in 3D matrices. Upon a miR-200 induced mesenchymal-epithelial transition (MET), the organoids switch to a smoother round morphology. Based on these observations, we developed a morphological screening method with accompanying analytical pipelines that leverage deep neural networks and nearest neighborhood classification to screen for EMT-reversing drugs. Through screening of a targeted epigenetic drug library, we identified multiple class I HDAC inhibitors and Bromodomain inhibitors that reverse EMT. These data support the use of morphological screening of mesenchymal mammary tumor organoids as a platform to identify drugs that reverse EMT.


Subject(s)
Antineoplastic Agents/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Mammary Neoplasms, Animal/pathology , Mesoderm/pathology , Organoids/pathology , Animals , Azacitidine/pharmacology , Benzamides/pharmacology , Drug Screening Assays, Antitumor , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Image Processing, Computer-Assisted , Mammary Neoplasms, Animal/genetics , Mice, Inbred BALB C , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , Organoids/drug effects , Pyrimidines/pharmacology , Reproducibility of Results , Small Molecule Libraries/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...