Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1867(9): 130426, 2023 09.
Article in English | MEDLINE | ID: mdl-37451477

ABSTRACT

BACKGROUND: Increasing evidence suggests that glaucoma affects the ocular surface. We aimed to investigate the cellular mechanisms underlying the glaucoma-associated corneal alterations in an animal model. METHODS: Wistar rats underwent the cauterization of two episcleral veins of the left eye to elevate the intraocular pressure (ipsilateral, G-IL). Control animals received a sham procedure (C-IL). Contralateral eyes did not receive any procedure (G-CL or C-CL). Enzymes related to the redox status, oxidative damage to macromolecules, and inflammatory markers were assessed in corneal lysates. RESULTS: Compared to C-IL, NOX4, NOX2, and iNOS expression was increased in G-IL (68%, p < 0.01; 247%, p < 0.01; and 200%, p < 0.001, respectively). We found an increase in SOD activity in G-IL (60%, p < 0.05). The GSH/GSSG ratio decreased in G-IL (80%, p < 0.05), with a decrease in GR activity (40%, p < 0.05). G-IL displayed oxidative (90%, p < 0.01) and nitrosative (40%, p < 0.05) protein damage, and enhanced lipid peroxidation (100%, p < 0.01). G-IL group showed an increased in CD45, CD68 and F4/80 expression (50%, p < 0.05; 190%, p < 0.001 and 110%, p < 0.05, respectively). G-CL displayed a higher expression of Nrf2 (60%, p < 0.001) and increased activity of SOD, CAT, and GPx (60%, p < 0.05; 90%, p < 0.01; and 50%, p < 0.05, respectively). CONCLUSIONS: Glaucoma induces a redox imbalance in the ipsilateral cornea with an adaptive response of the contralateral one. GENERAL SIGNIFICANCE: Our study provides a possible mechanism involving oxidative stress and inflammation that explains the corneal alterations observed in glaucoma. We demonstrate that these changes extend not only to the ipsilateral but also to the contralateral cornea.


Subject(s)
Glaucoma , Rats , Animals , Rats, Wistar , Oxidative Stress/physiology , Oxidation-Reduction , Cornea/metabolism , Superoxide Dismutase/metabolism
2.
Arch Biochem Biophys ; 701: 108815, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33609537

ABSTRACT

Glaucoma is a neurodegenerative disease that affects eye structures and brain areas related to the visual system. Oxidative stress plays a key role in the development and progression of the disease. The aims of the present study were to evaluate the mitochondrial function and its participation in the brain redox metabolism in an experimental glaucoma model. 3-month-old female Wistar rats were subjected to cauterization of two episcleral veins of the left eye to elevate the intraocular pressure. Seven days after surgery, animals were sacrificed, the brain was carefully removed and the primary visual cortex was dissected. Mitochondrial bioenergetics and ROS production, and the antioxidant enzyme defenses from both mitochondrial and cytosolic fractions were evaluated. When compared to control, glaucoma decreased mitochondrial ATP production (23%, p < 0.05), with an increase in superoxide and hydrogen peroxide production (30%, p < 0.01 and 28%, p < 0.05, respectively), whereas no changes were observed in membrane potential and oxygen consumption rate. In addition, the glaucoma group displayed a decrease in complex II activity (34%, p < 0.01). Moreover, NOX4 expression was increased in glaucoma compared to the control group (27%, p < 0.05). Regarding the activity of enzymes associated with the regulation of the redox status, glaucoma showed an increase in mitochondrial SOD activity (34%, p < 0.05), mostly due to an increase in Mn-SOD (50%, p < 0.05). A decrease in mitochondrial GST activity was observed (11%, p < 0.05). GR and TrxR activity were decreased in both mitochondrial (16%, p < 0.05 and 20%, p < 0.05 respectively) and cytosolic (21%, p < 0.01 and 50%, p < 0.01 respectively) fractions in the glaucoma group. Additionally, glaucoma showed an increase in cytoplasmatic GPx (50%, p < 0.01). In this scenario, redox imbalance took place resulting in damage to mitochondrial lipids (39%, p < 0.01) and proteins (70%, p < 0.05). These results suggest that glaucoma leads to mitochondrial function impairment in brain visual targets, that is accompanied by an alteration in both mitochondrial and cytoplasmatic enzymatic defenses. As a consequence of redox imbalance, oxidative damage to macromolecules takes place and can further affect vital cellular functions. Understanding the role of the mitochondria in the development and progression of the disease could bring up new neuroprotective therapies.


Subject(s)
Glaucoma/metabolism , Mitochondria/metabolism , Visual Cortex/metabolism , Adenosine Triphosphate/metabolism , Animals , Disease Models, Animal , Female , Glaucoma/pathology , Mitochondria/pathology , Mitochondrial Proteins/metabolism , NADPH Oxidase 4/metabolism , Rats , Rats, Wistar , Superoxide Dismutase/metabolism , Visual Cortex/pathology
3.
Exp Eye Res ; 200: 108225, 2020 11.
Article in English | MEDLINE | ID: mdl-32898512

ABSTRACT

The aim of this study was to elucidate the intracellular sources of oxidant species, the antioxidant response as well as the main signaling pathways involved in the regulation of the redox balance in the primary visual cortex of rats subjected to an experimental glaucoma model. 3-month female Wistar strain rats were operated under a microscope by cauterizing two of the episcleral veins in order to elevate the intraocular pressure (glaucoma group); the control group received a sham procedure. Seven days after surgery, the animals were sacrificed, the brains were carefully removed, and the primary visual cortex was dissected. NADPH oxidase (NOX) activity, as well as the inducible nitric oxide synthase (iNOS) expression, the enzymatic antioxidant defenses, the metabolism of glutathione, and the translocation of Nuclear factor-erythroid 2-related factor-2 (Nrf2) and Nuclear factor k-light-chain-enhancer of activated B cells (NF-κB) were assessed. Compared to control, glaucoma group displayed an increase in NOX activity (147%, p < 0.05), leading to a rise in the steady state concentration of oxidant species. Specifically, NOX4 expression was higher (90%, p < 0.05), suggesting that it could be a source of H2O2. In addition, iNOS expression was increased in glaucoma (47%, p < 0.05), as a source of NO in the brain, induced by NF-κB translocation to the nucleus (48%, p < 0.01). An increase in primary antioxidant enzymes superoxide dismutase (40%, p < 0.01) and glutathione peroxidase (55%, p < 0.05) was observed as an adaptive response to reactive oxygen species (ROS) production. However, an alteration in glutathione metabolism was shown in glaucoma due to a decrease in its recycling (40%, p < 0.05) as well as in its de novo synthesis (53%, p < 0.05), leading to a decreased in reduced/oxidized glutathione ratio (55%, p < 0.001). Moreover, a lower expression of Nfr2 was shown in glaucoma (40%, p < 0.05), suggesting that the cell signaling pathway that regulates the antioxidant capacity is compromised. In this context, redox imbalance takes place, resulting in oxidative damage to both lipids (70%, p < 0.001) and proteins (140%, p < 0.001). These results suggest that glaucoma damages not only eye structures but also brain visual targets such as the primary visual cortex. Redox imbalance takes place due to an enhancement in ROS and reactive nitrogen species production from different sources, such as NOX family and iNOS, respectively, in an onset where the antioxidant defenses are overwhelmed due to an impaired Nrf2 signaling, leading to oxidative damage to macromolecules.


Subject(s)
Glaucoma/metabolism , Intraocular Pressure/physiology , NADPH Oxidase 4/metabolism , NF-E2-Related Factor 2/metabolism , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Animals , Apoptosis , Disease Models, Animal , Glaucoma/physiopathology , Rats , Rats, Wistar
4.
Toxicol Appl Pharmacol ; 384: 114770, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31628919

ABSTRACT

The aim of the study was to evaluate the time course of the effects of urban air pollutants on the ocular surface, focusing on the morphological changes, the redox balance, and the inflammatory response of the cornea. 8-week-old mice were exposed to urban or filtered air (UA-group and FA-group, respectively) in exposure chambers for 1, 2, 4, and 12 weeks. After each time, the eyes were enucleated and the corneas were isolated for biochemical analysis. UA-group corneas exhibited a continuous increase in NADPH oxidase-4 levels throughout the exposure time, suggesting an increased production of reactive oxygen species (ROS). After 1 week, an early adaptive response to ROS was observed as an increase in antioxidant enzymes. After 4 weeks, the enzymatic antioxidants were decreased, meanwhile an increase of the glutathione was shown, as a later compensatory antioxidant response. However, redox imbalance took place, evidenced by the increased oxidized proteins, which persisted up to 12 weeks. At this time point, corneal epithelium hyperplasia was also observed. The inflammatory response was modulated by the increase in IL-10 levels after 1 week, which early regulates the release of TNF-α and IL-6. These results suggest that air pollution alters the ocular surface, supported by the observed cellular hyperplasia. The redox imbalance and the inflammatory response modulated by IL-10 play a key role in the response triggered by air pollutants on the cornea. Taking into account this time course study, the ocular surface should also be considered as a relevant target of urban air pollutants.


Subject(s)
Air Pollutants/toxicity , Air Pollution/adverse effects , Epithelium, Corneal/pathology , Animals , Brazil , Cities , Epithelium, Corneal/drug effects , Hyperplasia/chemically induced , Hyperplasia/pathology , Interleukin-10/metabolism , Male , Mice , NADPH Oxidase 4/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Time Factors , Toxicity Tests, Subacute , Toxicity Tests, Subchronic
5.
Exp Eye Res ; 171: 37-47, 2018 06.
Article in English | MEDLINE | ID: mdl-29524384

ABSTRACT

The aim of this study was to evaluate the time course of oxidative stress markers and inflammatory mediators in human conjunctival epithelial cells (IOBA-NHC) exposed to diesel exhaust particles (DEP) for 1, 3, and 24 h. Reactive oxygen species (ROS) production, lipid and protein oxidation, Nrf2 pathway activation, enzymatic antioxidants, glutathione (GSH) levels and synthesis, as well as cytokine release and cell proliferation were analyzed. Cells exposed to DEP showed an increase in ROS at all time points. The induction of NADPH oxidase-4 appeared later than mitochondrial superoxide anion production, when the cell also underwent a proinflammatory response mediated by IL-6. DEP exposure triggered the activation of Nrf2 in IOBA-NHC, as a strategy for increasing cellular antioxidant capacity. Antioxidant enzyme activities were significantly increased at early stages except for glutathione reductase (GR) that showed a significant decrease after a 3-h-incubation. GSH levels were found increased after 1 and 3 h of incubation with DEP, despite the increase in its consumption by the antioxidant enzymes as it works as a cofactor. GSH recycling and the de novo synthesis were responsible for the maintenance of its content at these time points, respectively. After 24 h, the decrease in GR and glutamate cysteine ligase as wells as the enhanced activity of glutathione peroxidase and glutathione S-transferase produced a depletion in the GSH pool. Lipid-peroxidation was found increased in cells exposed to DEP after 1-h-incubation, whereas protein oxidation was found increased in cells exposed to DEP after a 3-h-incubation that persisted after a longer exposure. Furthermore, DEP lead IOBA-NHC cells to hyperplasia after 1 and 3 h of incubation, but a decrease in cell proliferation was found after longer exposure. ROS production seems to be an earlier event triggered by DEP on IOBA-NHC, comparing to the proinflammatory response mediated by IL-6. Despite the fact that under short periods of exposure to DEP lipids and then proteins are targets of oxidative damage, the viability of the cells is not affected at early stages, since cell hyperplasia was detected as compensatory mechanism. Although after 24 h Nrf2 pathway is still enhanced, the epithelial cell capacity to maintain redox balance is exceeded. The antioxidant enzymes activation and the depleted GSH pool are not capable of counteracting the increased ROS production, leading to oxidative damage.


Subject(s)
Air Pollutants/toxicity , Conjunctiva/drug effects , Epithelial Cells/drug effects , Interleukin-6/metabolism , Reactive Oxygen Species/metabolism , Vehicle Emissions/toxicity , Cell Line , Cell Proliferation/drug effects , Conjunctiva/metabolism , Epithelial Cells/metabolism , Fluorescent Antibody Technique, Indirect , Glutathione/metabolism , Glutathione Reductase/metabolism , Glutathione Transferase/metabolism , Humans , Lipid Peroxidation , Membrane Potentials/physiology , Mitochondria/metabolism , NADPH Oxidase 4/metabolism , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction/drug effects , Oxidative Stress/physiology , Peroxidase/metabolism , Superoxides/metabolism
6.
Invest Ophthalmol Vis Sci ; 56(12): 7058-66, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26529041

ABSTRACT

PURPOSE: The aim of this study was to evaluate oxidative stress markers in human conjunctival epithelial cells (IOBA-NHC) exposed to diesel exhaust particles (DEP). METHODS: Reactive oxygen (ROS) and nitrogen (RNS) species production; hydrogen peroxide (H2O2) levels; protein oxidation; antioxidant enzymes activities (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], glutathione S-transferase [GST], and glutathione reductase [GR]); total reactive antioxidant potential (TRAP); reduced (GSH) and oxidized glutathione (GSSG) were evaluated. Transmission electron microscopy was performed to evaluate DEP uptake. RESULTS: Diesel exhaust particles were entrapped by membrane protrusions developed by IOBA-NHC. Cells exposed to DEP 50 and 100 µg/mL showed a significant increase in ROS, RNS, H2O2 levels, SOD, GPx, and GST compared with the control group. A significant decay in GR was observed in both groups, meanwhile CAT levels remained unchanged. The group exposed to DEP 100 µg/mL displayed a significant increase in protein oxidation. In both groups, TRAP was significantly reduced as well as the GSH/GSSG ratio. CONCLUSIONS: The decrease in nonenzymatic antioxidants and the compensatory increase of SOD, GPX, and GST activities are consequence of the increase in ROS and RNS production due to DEP exposure and its accumulation inside the cells. The decay in GR activity leads to the decrease in GSH/GSSG recycling. These results suggest that oxidative stress could play an important role in the development of DEP effects on human conjunctival epithelial cells.


Subject(s)
Conjunctiva/metabolism , Epithelial Cells/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Vehicle Emissions , Biomarkers/metabolism , Cells, Cultured , Conjunctiva/drug effects , Conjunctiva/ultrastructure , Epithelial Cells/drug effects , Epithelial Cells/ultrastructure , Humans , Microscopy, Electron, Transmission
7.
Food Funct ; 5(3): 557-63, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24477466

ABSTRACT

In a normal diet, the use of herbs may contribute significantly to the total intake of plant antioxidants and even be a better source of dietary antioxidants than many other food groups. Therefore, the aims of this study were to evaluate the protective effect of aqueous extracts of Aloysia triphylla (infusion and decoction) against lipid-peroxidation of brain homogenates and to determine changes in the prooxidant/antioxidant balance when the plant material is added. In order to elucidate a possible antioxidant mechanism in vitro evaluation of total antioxidant capacity, oxygen species scavenging ability and reducing power (RP) were studied. Tested extracts had shown a strong inhibition of lipid-peroxidation measured as thiobarbituric acid-reactive products of lipid-peroxidation (TBARS) and chemiluminescence. Furthermore, infusion and decoction exhibited free radical trapping ability, expressed by the capacity to scavenge superoxide and hydrogen peroxide. Additionally, both aqueous extracts presented antioxidant activity measured as total reactive antioxidant potential (TRAP), 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS) scavenging activity and RP. These results suggest that the lipid-peroxidation inhibition mechanism proposed is that the antioxidants present in Aloysia triphylla could act as strong scavengers of reactive oxygen species not only at the initiation of the lipid-peroxidation chain reaction, but also at the propagation step. Therefore, they could be used as prophylactic and therapeutic agents for those diseases where the occurrence of oxidative stress and lipid-peroxidation contributes to the progression of damage.


Subject(s)
Antioxidants/pharmacology , Brain/drug effects , Brain/metabolism , Plant Extracts/pharmacology , Verbenaceae/chemistry , Animals , Female , Lipid Peroxidation/drug effects , Mice , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism
8.
Acta Ophthalmol ; 91(1): e64-70, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23025455

ABSTRACT

PURPOSE: The goal of the present study is to establish the antioxidant status in the brain of a high pressure-induced rat model. METHODS: Ocular hypertension was induced in rats (n = 12) cauterizing two episcleral veins under a surgical microscope. A sham procedure (n = 12) was performed in the control group. The markers evaluated in the brain 7 days after surgery were as follows: spontaneous chemiluminescence, protein carbonylation, nitrite concentration, total reactive antioxidant potential (TRAP), ascorbic acid, glutathione, vitamin E and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase. RESULTS: Chemiluminescence in glaucoma was 55% higher than in controls (393 ± 20 cpm/mg protein, p < 0.001). Protein carbonylation in glaucoma was 93% higher than in controls (1.15 ± 0.18 nmol/mg protein, p < 0.001). Nitrite concentration was 5.30 ± 0.25 µM for glaucoma (controls 4.41 ± 0.24 µM, p < 0.05). Total reactive antioxidant potential decreased by 42% in glaucoma (controls 153 ± 14 µM Trolox, p < 0.001). Ascorbic acid was 67 ± 26 µM for glaucoma (controls 275 ± 22 µM, p < 0.001). Vitamin E was 0.58 ± 0.05 µmol/g organ for glaucoma (controls 1.10 ± 0.06 µmol/g organ, p < 0.01). Glutathione was 1.98 ± 0.13 µmol/g organ for glaucoma (controls 8.19 ± 0.71 µmol/g organ, p < 0.001). Superoxide dismutase and GPx were increased in glaucoma by 42 and 59%, respectively (p < 0.05). CONCLUSIONS: Reactive oxygen and nitrogen species were increased in glaucoma, the increase in chemiluminescence, protein carbonylation and nitrite levels could be evidenced by this situation. The decrease in nonenzymatic antioxidants and a compensatory increase in SOD and GPx activity may have been a consequence of an increase in oxidative processes.


Subject(s)
Antioxidants/metabolism , Brain/metabolism , Disease Models, Animal , Intraocular Pressure , Ocular Hypertension/metabolism , Oxidative Stress , Animals , Ascorbic Acid/metabolism , Catalase/metabolism , Female , Glutathione/metabolism , Glutathione Peroxidase/metabolism , Luminescence , Protein Carbonylation , Rats , Rats, Wistar , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , Vitamin E/metabolism
9.
Int J Toxicol ; 31(2): 192-202, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22427199

ABSTRACT

The aim of the present work was to make a contribution to the knowledge of aqueous extracts of Lippia turbinata and Aloysia citriodora (Verbenaceae; infusion and decoction) in relation with the establishment of its antioxidant activity and lack of DNA damage, for its potential use in therapeutics. The cytogenotoxic profile was evaluated through genotoxic biomarkers such as mitotic index, cellular proliferation kinetics, sister chromatid exchanges, single-cell gel electrophoresis assay, and micronucleus test in human peripheral blood lymphocyte cultures. No statistical differences were found (P > .05) between control and exposed cultures, even between both aqueous extracts. The total antioxidant capacity was shown to be higher in the decoction than in the infusion and both aqueous extracts protected against protein carbonylation and lipid peroxidation, the decoction being more efficient than the infusion (P < .005). These results suggest the safe use of these medicinal plants as chemoecologic agents in therapeutics.


Subject(s)
Antioxidants/pharmacology , Plant Extracts/pharmacology , Verbenaceae , Animals , Brain/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Comet Assay , DNA Damage , Female , Flavonoids/analysis , Humans , Luminescent Measurements , Lymphocytes , Micronucleus Tests , Mitotic Index , Plant Components, Aerial/chemistry , Plants, Medicinal/chemistry , Polyphenols/analysis , Rats , Rats, Wistar , Sister Chromatid Exchange/drug effects , Tannins/analysis , Thiobarbituric Acid Reactive Substances/metabolism , Verbenaceae/chemistry
10.
Invest Ophthalmol Vis Sci ; 51(9): 4635-40, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20357192

ABSTRACT

PURPOSE: To evaluate the relationship between oxidative stress markers and increased intraocular pressure in experimental glaucoma. METHODS: In vivo chemiluminescence (CL), total antioxidant capacity (TRAP), nitrite concentration (NC), and lipid peroxidation markers (TBARS) were evaluated. Wistar rats (n=18 for each time point) underwent operation, and two episcleral veins were cauterized. RESULTS: Decreases of 22%, 35%, and 27% at 7, 15, and 30 days and an increase of 22% at 60 days in CL were observed in glaucomatous eyes. In optic nerve, TBARS values were 6.9+/-0.5 nmol/mg protein (7 days), 9.4+/-0.4 nmol/mg protein (15 days), 18.0+/-1.2 nmol/mg protein (30 days), and 43.1+/-5.3 nmol/mg protein (60 days) (control, 6.2+/-0.4 nmol/mg protein; P<0.001). NC was 37.0+/-1.8 microM (7 days), 31.4+/-1.2 microM (15 days), 39.6+/-1.3 microM (30 days), and 40.0+/-1.3 microM (60 days) (control, 21.1+/-1.7 microM; P<0.001). In glaucomatous vitreous humor, TRAP decreased by 42% at 15 days and 78% at 60 days (control, 414+/-29 microM; P<0.001). In glaucomatous aqueous humor, TRAP values were 75+/-7 microM (7 days), 54+/-4 microM (15 days), 25+/-4 microM (30 days), and 50+/-3 microM (60 days) (control, 90+/-10 microM; P<0.001). CONCLUSIONS: Reactive species were increased in glaucoma, as evidenced by the increases in CL, TBARS, and NC. The decrease in the antioxidant levels may be a consequence of an increase in oxidative processes.


Subject(s)
Biomarkers/metabolism , Glaucoma/metabolism , Intraocular Pressure/physiology , Oxidative Stress/physiology , Animals , Antioxidants/metabolism , Aqueous Humor/metabolism , Disease Models, Animal , Female , Lipid Peroxidation/physiology , Luminescence , Nitrites/metabolism , Rats , Rats, Wistar , Thiobarbituric Acid Reactive Substances/metabolism , Vitreous Body/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...