Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
J Am Chem Soc ; 146(20): 13783-13796, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38723619

ABSTRACT

The deposition of islet amyloid polypeptide (hIAPP) fibrils is a hallmark of ß-cell death in type II diabetes. In this study, we employ state-of-the-art MAS solid-state spectroscopy to investigate the previously elusive N-terminal region of hIAPP fibrils, uncovering both rigidity and heterogeneity. Comparative analysis between wild-type hIAPP and a disulfide-deficient variant (hIAPPC2S,C7S) unveils shared fibril core structures yet strikingly distinct dynamics in the N-terminus. Specifically, the variant fibrils exhibit extended ß-strand conformations, facilitating surface nucleation. Moreover, our findings illuminate the pivotal roles of specific residues in modulating secondary nucleation rates. These results deepen our understanding of hIAPP fibril assembly and provide critical insights into the molecular mechanisms underpinning type II diabetes, holding promise for future therapeutic strategies.


Subject(s)
Islet Amyloid Polypeptide , Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/metabolism , Humans , Amyloid/chemistry , Amyloid/metabolism , Protein Conformation
2.
Proc Natl Acad Sci U S A ; 121(23): e2401458121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38809711

ABSTRACT

Patients with type 1 diabetes mellitus who are dependent on an external supply of insulin develop insulin-derived amyloidosis at the sites of insulin injection. A major component of these plaques is identified as full-length insulin consisting of the two chains A and B. While there have been several reports that characterize insulin misfolding and the biophysical properties of the fibrils, atomic-level information on the insulin fibril architecture remains elusive. We present here an atomic resolution structure of a monomorphic insulin amyloid fibril that has been determined using magic angle spinning solid-state NMR spectroscopy. The structure of the insulin monomer yields a U-shaped fold in which the two chains A and B are arranged in parallel to each other and are oriented perpendicular to the fibril axis. Each chain contains two ß-strands. We identify two hydrophobic clusters that together with the three preserved disulfide bridges define the amyloid core structure. The surface of the monomeric amyloid unit cell is hydrophobic implicating a potential dimerization and oligomerization interface for the assembly of several protofilaments in the mature fibril. The structure provides a starting point for the development of drugs that bind to the fibril surface and disrupt secondary nucleation as well as for other therapeutic approaches to attenuate insulin aggregation.


Subject(s)
Amyloid , Insulin , Humans , Amyloid/chemistry , Amyloid/metabolism , Insulin/chemistry , Insulin/metabolism , Models, Molecular , Hydrophobic and Hydrophilic Interactions , Diabetes Mellitus, Type 1/drug therapy , Protein Conformation , Magnetic Resonance Spectroscopy
3.
Magn Reson (Gott) ; 4(2): 199-215, 2023.
Article in English | MEDLINE | ID: mdl-37904859

ABSTRACT

In this paper, we provide an analytical description of the performance of the cross-polarization (CP) experiment, including linear ramps and adiabatic tangential sweeps, using effective Hamiltonians and simple rotations in 3D space. It is shown that radiofrequency field inhomogeneity induces a reduction in the transfer efficiency at increasing magic angle spinning (MAS) frequencies for both the ramp and the adiabatic CP experiments. The effect depends on the ratio of the dipolar coupling constant and the sample rotation frequency. In particular, our simulations show that for small dipolar couplings (1 kHz) and ultrafast MAS (above 100 kHz) the transfer efficiency is below 40 % when extended contact times up to 20 ms are used and relaxation losses are ignored. New recoupling and magnetization transfer techniques that are designed explicitly to account for inhomogeneous radiofrequency fields are needed.

4.
Nat Commun ; 14(1): 3755, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37353525

ABSTRACT

Systemic antibody light chain (AL) amyloidosis is characterized by deposition of amyloid fibrils. Prior to fibril formation, soluble oligomeric AL protein has a direct cytotoxic effect on cardiomyocytes. We focus on the patient derived λ-III AL variable domain FOR005 which is mutated at five positions with respect to the closest germline protein. Using solution-state NMR spectroscopy, we follow the individual steps involved in protein misfolding from the native to the amyloid fibril state. Unfavorable mutations in the complementary determining regions introduce a strain in the native protein structure which yields partial unfolding. Driven by electrostatic interactions, the protein converts into a high molecular weight, oligomeric, molten globule. The high local concentration of aggregation prone regions in the oligomer finally catalyzes the conversion into fibrils. The topology is determined by balanced electrostatic interactions in the fibril core implying a 180° rotational switch of the beta-sheets around the conserved disulfide bond.


Subject(s)
Amyloidosis , Immunoglobulin Light-chain Amyloidosis , Humans , Immunoglobulin Light Chains/chemistry , Amyloidosis/metabolism , Immunoglobulin Light-chain Amyloidosis/metabolism , Amyloid/metabolism , Mutation
5.
J Biol Chem ; 299(3): 102926, 2023 03.
Article in English | MEDLINE | ID: mdl-36682493

ABSTRACT

Soluble amyloid-ß oligomers (AßOs) are proposed to instigate and mediate the pathology of Alzheimer's disease, but the mechanisms involved are not clear. In this study, we reported that AßOs can undergo liquid-liquid phase separation (LLPS) to form liquid-like droplets in vitro. We determined that AßOs exhibited an α-helix conformation in a membrane-mimicking environment of SDS. Importantly, SDS is capable of reconfiguring the assembly of different AßOs to induce their LLPS. Moreover, we found that the droplet formation of AßOs was promoted by strong hydrated anions and weak hydrated cations, suggesting that hydrophobic interactions play a key role in mediating phase separation of AßOs. Finally, we observed that LLPS of AßOs can further promote Aß to form amyloid fibrils, which can be modulated by (-)-epigallocatechin gallate. Our study highlights amyloid oligomers as an important entity involved in protein liquid-to-solid phase transition and reveals the regulatory role of LLPS underlying amyloid protein aggregation, which may be relevant to the pathological process of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Phase Transition , Protein Aggregation, Pathological , Humans , Alzheimer Disease/physiopathology , Amyloid/chemistry , Amyloid/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Sodium Dodecyl Sulfate/chemistry , Protein Aggregation, Pathological/physiopathology
6.
Prog Nucl Magn Reson Spectrosc ; 130-131: 47-61, 2022.
Article in English | MEDLINE | ID: mdl-36113917

ABSTRACT

Proton detection in solid state NMR is continuously developing and allows one to gain new insights in structural biology. Overall, this progress is a result of the synergy between hardware development, new NMR methodology and new isotope labeling strategies, to name a few factors. Even though current developments are rapid, it is worthwhile to summarize what can currently be achieved employing proton detection in biological solids. We illustrate this by analysing the signal-to-noise ratio (SNR) for spectra obtained for a microcrystalline α-spectrin SH3 domain protein sample by (i) employing different degrees of chemical dilution to replace protons by incorporating deuterons in different sites, by (ii) variation of the magic angle spinning (MAS) frequencies between 20 and 110 kHz, and by (iii) variation of the static magnetic field B0. The experimental SNR values are validated with numerical simulations employing up to 9 proton spins. Although in reality a protein would contain far more than 9 protons, in a deuterated environment this is a sufficient number to achieve satisfactory simulations consistent with the experimental data. The key results of this analysis are (i) with current hardware, deuteration is still necessary to record spectra of optimum quality; (ii) 13CH3 isotopomers for methyl groups yield the best SNR when MAS frequencies above 100 kHz are available; and (iii) sensitivity increases with a factor beyond B0 3/2 with the static magnetic field due to a transition of proton-proton dipolar interactions from a strong to a weak coupling limit.


Subject(s)
Proton Therapy , Protons , Deuterium/chemistry , Spectrin/chemistry , src Homology Domains
7.
J Am Chem Soc ; 144(38): 17336-17340, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36074981

ABSTRACT

Recently, proton-detected magic-angle spinning (MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy has become an attractive tool to study the structure and dynamics of insoluble proteins at atomic resolution. The sensitivity of the employed multidimensional experiments can be systematically improved when both transversal components of the magnetization are transferred simultaneously after an evolution period. The method of preservation of equivalent pathways has been explored in solution-state NMR; however, it does not find widespread application due to relaxation issues connected with increased molecular size. We present here for the first time heteronuclear transverse mixing sequences for correlation experiments at moderate and fast MAS frequencies. Optimal control allows to boost the signal-to-noise ratio (SNR) beyond the expected factor of 2 for each indirect dimension. In addition to the carbon-detected sensitivity-enhanced 2D NCA experiment, we present a novel proton-detected, doubly sensitivity-enhanced 3D hCANH pulse sequence for which we observe a 3-fold improvement in SNR compared to the conventional experimental implementation. The sensitivity gain turned out to be essential to unambiguously characterize a minor fibril polymorph of a human lambda-III immunoglobulin light chain protein that escaped detection so far.


Subject(s)
Proteins , Protons , Carbon , Humans , Immunoglobulin Light Chains , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry
8.
J Struct Biol X ; 6: 100069, 2022.
Article in English | MEDLINE | ID: mdl-35924280

ABSTRACT

AA amyloidosis is one of the most prevalent forms of systemic amyloidosis and affects both humans and other vertebrates. In this study, we compare MAS solid-state NMR data with a recent cryo-EM study of fibrils involving full-length murine SAA1.1. We address the question whether the specific requirements for the reconstitution of an amyloid fibril structure by cryo-EM can potentially yield a bias towards a particular fibril polymorph. We employ fibril seeds extracted from in to vivo material to imprint the fibril structure onto the biochemically produced protein. Sequential assignments yield the secondary structure elements in the fibril state. Long-range DARR and PAR experiments confirm largely the topology observed in the ex-vivo cryo-EM study. We find that the ß-sheets identified in the NMR experiments are similar to the ß-sheets found in the cryo-EM study, with the exception of amino acids 33-42. These residues cannot be assigned by solid-state NMR, while they adopt a stable ß-sheet in the cryo-EM structure. We suggest that the differences between MAS solid-state NMR and cryo-EM data are a consequence of a second conformer involving residues 33-42. Moreover, we were able to characterize the dynamic C-terminal tail of SAA in the fibril state. The C-terminus is flexible, remains detached from the fibrils, and does not affect the SAA fibril structure as confirmed further by molecular dynamics simulations. As the C-terminus can potentially interact with other cellular components, binding to cellular targets can affect its accessibility for protease digestion.

9.
Biochim Biophys Acta Biomembr ; 1864(10): 183996, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35753394

ABSTRACT

The treatment of invasive drug-resistant and potentially life-threatening fungal infections is limited to few therapeutic options that are usually associated with severe side effects. The development of new effective antimycotics with a more tolerable side effect profile is therefore of utmost clinical importance. Here, we used a combination of complementary in vitro assays and structural analytical methods to analyze the interaction of the de novo antimicrobial peptide VG16KRKP with the sterol moieties of biological cell membranes. We demonstrate that VG16KRKP disturbs the structural integrity of fungal membranes both invitro and in model membrane system containing ergosterol along with phosphatidylethanolamine lipid and exhibits broad-spectrum antifungal activity. As revealed by systematic structure-function analysis of mutated VG16KRKP analogs, a specific pattern of basic and hydrophobic amino acid side chains in the primary peptide sequence determines the selectivity of VG16KRKP for fungal specific membranes.


Subject(s)
Antifungal Agents , Ergosterol , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Cell Membrane/metabolism , Ergosterol/chemistry , Peptides/chemistry , Peptides/pharmacology , Sterols/metabolism
10.
Chem Rev ; 122(10): 10019-10035, 2022 05 25.
Article in English | MEDLINE | ID: mdl-34870415

ABSTRACT

Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.


Subject(s)
Proteins , Protons , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry
11.
J Mol Biol ; 434(2): 167385, 2022 01 30.
Article in English | MEDLINE | ID: mdl-34883118

ABSTRACT

Human amylin forms structurally heterogeneous amyloids that have been linked to type-2 diabetes. Thus, understanding the molecular interactions governing amylin aggregation can provide mechanistic insights in its pathogenic formation. Here, we demonstrate that fibril formation of amylin is altered by synthetic amphipathic copolymer derivatives of the styrene-maleic-acid (SMAQA and SMAEA). High-speed AFM is used to follow the real-time aggregation of amylin by observing the rapid formation of de novo globular oligomers and arrestment of fibrillation by the positively-charged SMAQA. We also observed an accelerated fibril formation in the presence of the negatively-charged SMAEA. These findings were further validated by fluorescence, SOFAST-HMQC, DOSY and STD NMR experiments. Conformational analysis by CD and FT-IR revealed that the SMA copolymers modulate the conformation of amylin aggregates. While the species formed with SMAQA are α-helical, the ones formed with SMAEA are rich in ß-sheet structure. The interacting interfaces between SMAEA or SMAQA and amylin are mapped by NMR and microseconds all-atom MD simulation. SMAEA displayed π-π interaction with Phe23, electrostatic π-cation interaction with His18 and hydrophobic packing with Ala13 and Val17; whereas SMAQA showed a selective interaction with amylin's C terminus (residues 31-37) that belongs to one of the two ß-sheet regions (residues 14-19 and 31-36) involved in amylin fibrillation. Toxicity analysis showed both SMA copolymers to be non-toxic in vitro and the amylin species formed with the copolymers showed minimal deformity to zebrafish embryos. Together, this study demonstrates that chemical tools, such as copolymers, can be used to modulate amylin aggregation, alter the conformation of species.


Subject(s)
Islet Amyloid Polypeptide/chemistry , Maleates/chemistry , Molecular Conformation , Styrene/chemistry , Amyloid/chemistry , Animals , Computer Simulation , Diabetes Mellitus, Type 2 , Fluorescence , Humans , Hydrophobic and Hydrophilic Interactions , Protein Aggregates , Spectroscopy, Fourier Transform Infrared , Styrenes/chemistry , Zebrafish
12.
Nat Commun ; 12(1): 6697, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34795272

ABSTRACT

Hsp26 is a small heat shock protein (sHsp) from S. cerevisiae. Its chaperone activity is activated by oligomer dissociation at heat shock temperatures. Hsp26 contains 9 phosphorylation sites in different structural elements. Our analysis of phospho-mimetic mutations shows that phosphorylation activates Hsp26 at permissive temperatures. The cryo-EM structure of the Hsp26 40mer revealed contacts between the conserved core domain of Hsp26 and the so-called thermosensor domain in the N-terminal part of the protein, which are targeted by phosphorylation. Furthermore, several phosphorylation sites in the C-terminal extension, which link subunits within the oligomer, are sensitive to the introduction of negative charges. In all cases, the intrinsic inhibition of chaperone activity is relieved and the N-terminal domain becomes accessible for substrate protein binding. The weakening of domain interactions within and between subunits by phosphorylation to activate the chaperone activity in response to proteotoxic stresses independent of heat stress could be a general regulation principle of sHsps.


Subject(s)
Heat-Shock Proteins/metabolism , Protein Multimerization , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding Sites/genetics , Circular Dichroism , Cryoelectron Microscopy , Fluorescence Resonance Energy Transfer , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Heat-Shock Response , Models, Molecular , Mutation , Phosphorylation , Protein Binding , Protein Conformation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/ultrastructure , Tandem Mass Spectrometry , Temperature
13.
Sci Adv ; 7(42): eabj5913, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34644121

ABSTRACT

Dipolar recoupling is a central concept in the nuclear magnetic resonance spectroscopy of powdered solids and is used to establish correlations between different nuclei by magnetization transfer. The efficiency of conventional cross-polarization methods is low because of the inherent radio frequency (rf) field inhomogeneity present in the magic angle spinning (MAS) experiments and the large chemical shift anisotropies at high magnetic fields. Very high transfer efficiencies can be obtained using optimal control­derived experiments. These sequences had to be optimized individually for a particular MAS frequency. We show that by adjusting the length and the rf field amplitude of the shaped pulse synchronously with sample rotation, optimal control sequences can be successfully applied over a range of MAS frequencies without the need of reoptimization. This feature greatly enhances their applicability on spectrometers operating at differing external fields where the MAS frequency needs to be adjusted to avoid detrimental resonance effects.

14.
Amyloid ; 28(4): 243-251, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34338090

ABSTRACT

Several studies recently showed that ex vivo fibrils from patient or animal tissue were structurally different from in vitro formed fibrils from the same polypeptide chain. Analysis of serum amyloid A (SAA) and Aß-derived amyloid fibrils additionally revealed that ex vivo fibrils were more protease stable than in vitro fibrils. These observations gave rise to the proteolytic selection hypothesis that suggested that disease-associated amyloid fibrils were selected inside the body by their ability to resist endogenous clearance mechanisms. We here show, for more than twenty different fibril samples, that ex vivo fibrils are more protease stable than in vitro fibrils. These data support the idea of a proteolytic selection of pathogenic amyloid fibril morphologies and help to explain why only few amino acid sequences lead to amyloid diseases, although many, if not all, polypeptide chains can form amyloid fibrils in vitro.


Subject(s)
Amyloid , Amyloidosis , Amino Acid Sequence , Animals , Humans , Peptide Hydrolases , Serum Amyloid A Protein
15.
Article in English | MEDLINE | ID: mdl-34368784

ABSTRACT

Solid-state nuclear magnetic resonance (NMR) spectroscopy is an atomic-level method used to determine the chemical structure, three-dimensional structure, and dynamics of solids and semi-solids. This Primer summarizes the basic principles of NMR as applied to the wide range of solid systems. The fundamental nuclear spin interactions and the effects of magnetic fields and radiofrequency pulses on nuclear spins are the same as in liquid-state NMR. However, because of the anisotropy of the interactions in the solid state, the majority of high-resolution solid-state NMR spectra is measured under magic-angle spinning (MAS), which has profound effects on the types of radiofrequency pulse sequences required to extract structural and dynamical information. We describe the most common MAS NMR experiments and data analysis approaches for investigating biological macromolecules, organic materials, and inorganic solids. Continuing development of sensitivity-enhancement approaches, including 1H-detected fast MAS experiments, dynamic nuclear polarization, and experiments tailored to ultrahigh magnetic fields, is described. We highlight recent applications of solid-state NMR to biological and materials chemistry. The Primer ends with a discussion of current limitations of NMR to study solids, and points to future avenues of development to further enhance the capabilities of this sophisticated spectroscopy for new applications.

16.
Biomol NMR Assign ; 15(1): 9-16, 2021 04.
Article in English | MEDLINE | ID: mdl-32946005

ABSTRACT

The aggregation of antibody light chains is linked to systemic light chain (AL) amyloidosis, a disease where amyloid deposits frequently affect the heart and the kidney. We here investigate fibrils from the λ-III FOR005 light chain (LC), which is derived from an AL-patient with severe cardiac involvement. In FOR005, five residues are mutated with respect to its closest germline gene segment IGLV3-19 and IGLJ3. All mutations are located close to the complementarity determining regions (CDRs). The sequence segments responsible for the fibril formation are not yet known. We use fibrils extracted from the heart of this particular amyloidosis patient as seeds to prepare fibrils for solid-state NMR. We show that the seeds induce the formation of a specific fibril structure from the biochemically produced protein. We have assigned the fibril core region of the FOR005-derived fibrils and characterized the secondary structure propensity of the observed amino acids. As the primary structure of the aggregated patient protein is different for every AL patient, it is important to study, analyze and report a greater number of light chain sequences associated with AL amyloidosis.


Subject(s)
Amyloid , Nuclear Magnetic Resonance, Biomolecular , Amino Acid Sequence , Humans , Immunoglobulin Light Chains , Protein Folding
17.
J Mol Biol ; 432(23): 6187-6199, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33058870

ABSTRACT

In antibody light chain amyloidosis (AL), mutant light chains (LCs) or their variable domains (VLs) form fibrils, which accumulate in organs and lead to their failure. The molecular mechanism of this disease is still poorly understood. One of the key open issues is whether the mutant VLs and LCs differ in fibril formation. We addressed this question studying the effects of the VL mutations S20N and R61A within the isolated VL domain and in the full-length LC scaffold. Both VL variants readily form fibrils. Here, we find that in the LC context, the S20N variant is protected from fibril formation while for LC R61A fibril formation is even accelerated compared to VL R61A. Our analyses revealed that the partially unfolded state of the VL R61A domain destabilizes the CL domain by non-native interactions, in turn leading to a further unfolding of the VL domain. In contrast, the folded mutant VL S20N and VL wt form native interactions with CL. These are beneficial for LC stability and promote amyloid resistance. Thus the effects of specific mutations on the VL fold can have opposing effects on LC domain interactions, stability and amyloidogenicity.


Subject(s)
Amyloid/genetics , Amyloidogenic Proteins/genetics , Immunoglobulin Light Chains/immunology , Protein Aggregation, Pathological/genetics , Amino Acid Sequence/genetics , Amyloid/immunology , Amyloidogenic Proteins/immunology , Amyloidosis/genetics , Amyloidosis/immunology , Humans , Immunoglobulin Light Chains/genetics , Models, Molecular , Mutant Proteins/genetics , Mutant Proteins/immunology , Protein Aggregation, Pathological/immunology , Protein Conformation
18.
Chem Commun (Camb) ; 56(86): 13129-13132, 2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33006345

ABSTRACT

In this study, the effect of CurDAc, a water-soluble curcumin derivative, on the formation and stability of amyloid fibers is revealed. CurDAc interaction with amyloid is structurally selective, which is reflected in a strong interference with hIAPP aggregation while showing weaker interactions with human-calcitonin and amyloid-ß1-40 in comparison. Remarkably, CurDAc also exhibited potent fiber disaggregation for hIAPP generating a toxic oligomeric species.


Subject(s)
Copper/pharmacology , Curcumin/pharmacology , Islet Amyloid Polypeptide/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Copper/chemistry , Curcumin/analogs & derivatives , Curcumin/chemistry , Humans , Magnetic Resonance Spectroscopy , Protein Aggregates/drug effects , Rats , Small Molecule Libraries/chemistry
19.
J Biol Chem ; 295(52): 18474-18484, 2020 12 25.
Article in English | MEDLINE | ID: mdl-33093170

ABSTRACT

Systemic antibody light chains (AL) amyloidosis is characterized by deposition of amyloid fibrils derived from a particular antibody light chain. Cardiac involvement is a major risk factor for mortality. Using MAS solid-state NMR, we studied the fibril structure of a recombinant light chain fragment corresponding to the fibril protein from patient FOR005, together with fibrils formed by protein sequence variants that are derived from the closest germline (GL) sequence. Both analyzed fibril structures were seeded with ex-vivo amyloid fibrils purified from the explanted heart of this patient. We find that residues 11-42 and 69-102 adopt ß-sheet conformation in patient protein fibrils. We identify arginine-49 as a key residue that forms a salt bridge to aspartate-25 in the patient protein fibril structure. In the germline sequence, this residue is replaced by a glycine. Fibrils from the GL protein and from the patient protein harboring the single point mutation R49G can be both heterologously seeded using patient ex-vivo fibrils. Seeded R49G fibrils show an increased heterogeneity in the C-terminal residues 80-102, which is reflected by the disappearance of all resonances of these residues. By contrast, residues 11-42 and 69-77, which are visible in the MAS solid-state NMR spectra, show 13Cα chemical shifts that are highly like patient fibrils. The mutation R49G thus induces a conformational heterogeneity at the C terminus in the fibril state, whereas the overall fibril topology is retained. These findings imply that patient mutations in FOR005 can stabilize the fibril structure.


Subject(s)
Amyloid/chemistry , Immunoglobulin Light Chains/genetics , Immunoglobulin Light-chain Amyloidosis/pathology , Mutation , Amino Acid Sequence , Amyloid/metabolism , Humans , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/metabolism , Immunoglobulin Light-chain Amyloidosis/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation, beta-Strand , Sequence Homology
20.
Chembiochem ; 21(17): 2495-2502, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32291951

ABSTRACT

Positron emission tomography (PET) tracer molecules like thioflavin T specifically recognize amyloid deposition in brain tissue by selective binding to hydrophobic or aromatic surface grooves on the ß-sheet surface along the fibril axis. The molecular basis of this interaction is, however, not well understood. We have employed magic angle spinning (MAS) solid-state NMR spectroscopy to characterize Aß-PET tracer complexes at atomic resolution. We established a titration protocol by using bovine serum albumin as a carrier to transfer hydrophobic small molecules to Aß(1-40) fibrillar aggregates. The same Aß(1-40) amyloid fibril sample was employed in subsequent titrations to minimize systematic errors that potentially arise from sample preparation. In the experiments, the small molecules 13 C-methylated Pittsburgh compound B (PiB) as well as a novel Aß tracer based on a diarylbithiazole (DABTA) scaffold were employed. Classical 13 C-detected as well as proton-detected spectra of protonated and perdeuterated samples with back-substituted protons, respectively, were acquired and analyzed. After titration of the tracers, chemical-shift perturbations were observed in the loop region involving residues Gly25-Lys28 and Ile32-Gly33, thus suggesting that the PET tracer molecules interact with the loop region connecting ß-sheets ß1 and ß2 in Aß fibrils. We found that titration of the PiB derivatives suppressed fibril polymorphism and stabilized the amyloid fibril structure.


Subject(s)
Alzheimer Disease/diagnosis , Amyloid/chemistry , Aniline Compounds/chemistry , Fluorescent Dyes/chemistry , Nuclear Magnetic Resonance, Biomolecular , Positron-Emission Tomography , Thiazoles/chemistry , Amyloid/metabolism , Binding Sites , Carbon Isotopes , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...