Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 29(4): 646-656, 2019 04.
Article in English | MEDLINE | ID: mdl-30846530

ABSTRACT

We report on the development of a methylation analysis workflow for optical detection of fluorescent methylation profiles along chromosomal DNA molecules. In combination with Bionano Genomics genome mapping technology, these profiles provide a hybrid genetic/epigenetic genome-wide map composed of DNA molecules spanning hundreds of kilobase pairs. The method provides kilobase pair-scale genomic methylation patterns comparable to whole-genome bisulfite sequencing (WGBS) along genes and regulatory elements. These long single-molecule reads allow for methylation variation calling and analysis of large structural aberrations such as pathogenic macrosatellite arrays not accessible to single-cell second-generation sequencing. The method is applied here to study facioscapulohumeral muscular dystrophy (FSHD), simultaneously recording the haplotype, copy number, and methylation status of the disease-associated, highly repetitive locus on Chromosome 4q.


Subject(s)
DNA Methylation , Sequence Analysis, DNA/methods , Genetic Variation , Humans , Muscular Dystrophy, Facioscapulohumeral/genetics , Sequence Analysis, DNA/standards
3.
J Chem Phys ; 142(6): 064902, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25681938

ABSTRACT

We obtained experimental extension data for barcoded E. coli genomic DNA molecules confined in nanochannels from 40 nm to 51 nm in width. The resulting data set consists of 1 627 779 measurements of the distance between fluorescent probes on 25 407 individual molecules. The probability density for the extension between labels is negatively skewed, and the magnitude of the skewness is relatively insensitive to the distance between labels. The two Odijk theories for DNA confinement bracket the mean extension and its variance, consistent with the scaling arguments underlying the theories. We also find that a harmonic approximation to the free energy, obtained directly from the probability density for the distance between barcode labels, leads to substantial quantitative error in the variance of the extension data. These results suggest that a theory for DNA confinement in such channels must account for the anharmonic nature of the free energy as a function of chain extension.


Subject(s)
DNA, Bacterial/genetics , Escherichia coli/genetics , Nanotechnology/methods , Chromosome Mapping , DNA, Bacterial/chemistry , Fluorescent Dyes/chemistry , Genome, Bacterial/genetics , Probability
4.
Proc Natl Acad Sci U S A ; 106(43): 18255-60, 2009 Oct 27.
Article in English | MEDLINE | ID: mdl-19828438

ABSTRACT

We simultaneously measure both the step size, via FIONA, and the 3-D orientation, via DOPI, of the light-chain domain of individual dimeric myosin VIs. This allows for the correlation of the change in orientation of the light chain domain to the stepping of the motor. Three different pairs of positions were tested using a rigid bifunctional rhodamine on the calmodulin of the IQ domain. The data for all three labeling positions support the model that the light chain domain undergoes a significant rotation of approximately 180 degrees . Contrary to an earlier study [Sun, Y. et al. (2007) Mol Cell 28, 954-964], our data does not support a model of multiple angles of the lever arm of the lead head, nor "wiggly" walking on actin. Instead, we propose that for the two heads of myosin VI to coordinate their processive movement, the lever arm of the lead head must be uncoupled from the converter until the rear head detaches. More specifically, intramolecular strain causes the myosin VI lever arm of the lead head to uncouple from the motor domain, allowing the motor domain to go through its product-release (phosphate and ADP) steps at an unstrained rate. The lever arm of the lead head rebinds to the motor and attains a rigor conformation when the rear head detaches. By coupling the orientation and position information with previously described kinetics, this allows us to explain how myosin VI coordinates its heads processively while maintaining the ability to move under load with a (semi-) rigid lever arm.


Subject(s)
Myosin Heavy Chains/chemistry , Swine/metabolism , Animals , Cell Line , Crystallography, X-Ray , Models, Molecular , Myosin Heavy Chains/metabolism , Protein Binding , Protein Structure, Quaternary
5.
Nat Struct Biol ; 10(5): 402-8, 2003 May.
Article in English | MEDLINE | ID: mdl-12679807

ABSTRACT

Conformational changes within myosin lead to its movement relative to an actin filament. Several crystal structures exist for myosin bound to various nucleotides, but none with bound actin. Therefore, the effect of actin on the structure of myosin is poorly understood. Here we show that the swing of smooth muscle myosin lever arm requires both ADP and actin. This is the first direct observation that a conformation of myosin is dependent on actin. Conformational changes within myosin were monitored using fluorescence resonance energy transfer techniques. A cysteine-reactive probe is site-specifically labeled on a 'cysteine-light' myosin variant, in which the native reactive cysteines were removed and a cysteine engineered at a desired position. Using this construct, we show that the actin-dependent ADP swing causes an 18 A change in distance between a probe on the 25/50 kDa loop on the catalytic domain and a probe on the regulatory light chain, corresponding to a 23 degrees swing of the light-chain domain.


Subject(s)
Actins/chemistry , Actins/metabolism , Myosins/chemistry , Myosins/metabolism , Amino Acid Substitution , Animals , Chickens , Cysteine , Fluorescence Resonance Energy Transfer , Gizzard, Avian/metabolism , Kinetics , Muscle, Smooth/metabolism , Mutagenesis, Site-Directed , Myosin Light Chains/chemistry , Myosin Light Chains/metabolism , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...