Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Eur Respir Rev ; 33(172)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657996

ABSTRACT

Common airborne allergens (pollen, animal dander and those from fungi and insects) are the main triggers of type I allergic disorder in the respiratory system and are associated with allergic rhinitis, allergic asthma, as well as immunoglobulin E (IgE)-mediated allergic bronchopulmonary aspergillosis. These allergens promote IgE crosslinking, vasodilation, infiltration of inflammatory cells, mucosal barrier dysfunction, extracellular matrix deposition and smooth muscle spasm, which collectively cause remodelling of the airways. Fungus and insect (house dust mite and cockroaches) indoor allergens are particularly rich in proteases. Indeed, more than 40 different types of aeroallergen proteases, which have both IgE-neutralising and tissue-destructive activities, have been documented in the Allergen Nomenclature database. Of all the inhaled protease allergens, 85% are classed as serine protease activities and include trypsin-like, chymotrypsin-like and collagenolytic serine proteases. In this article, we review and compare the allergenicity and proteolytic effect of allergen serine proteases as listed in the Allergen Nomenclature and MEROPS databases and highlight their contribution to allergic sensitisation, disruption of the epithelial barrier and activation of innate immunity in allergic airways disease. The utility of small-molecule inhibitors of allergen serine proteases as a potential treatment strategy for allergic airways disease will also be discussed.


Subject(s)
Allergens , Immunity, Innate , Serine Proteases , Humans , Allergens/immunology , Serine Proteases/metabolism , Serine Proteases/immunology , Animals , Air Pollution, Indoor/adverse effects , Serine Proteinase Inhibitors/therapeutic use , Inhalation Exposure/adverse effects , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/enzymology
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167079, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38367901

ABSTRACT

Type 2 inflammation in asthma develops with exposure to stimuli to include inhaled allergens from house dust mites (HDM). Features include mucus hypersecretion and the formation of pro-secretory ion transport characterised by elevated basal Cl- current. Studies using human sinonasal epithelial cells treated with HDM extract report a higher protease activated receptor-2 (PAR-2) agonist-induced calcium mobilisation that may be related to airway sensitisation by allergen-associated proteases. Herein, this study aimed to investigate the effect of HDM on Ca2+ signalling and inflammatory responses in asthmatic airway epithelial cells. Primary bronchial epithelial cells (hPBECs) from asthma donors cultured at air-liquid interface were used to assess electrophysiological, Ca2+ signalling and inflammatory responses. Differences were observed regarding Ca2+ signalling in response to PAR-2 agonist 2-Furoyl-LIGRLO-amide (2-FLI), and equivalent short-circuit current (Ieq) in response to trypsin and 2-FLI, in ALI-asthma and healthy hPBECs. HDM treatment led to increased levels of intracellular cations (Ca2+, Na+) and significantly reduced the 2-FLI-induced change of Ieq in asthma cells. Apical HDM-induced Ca2+ mobilisation was found to mainly involve the activation of PAR-2 and PAR-4-associated store-operated Ca2+ influx and TRPV1. In contrast, PAR-2, PAR-4 antagonists and TRPV1 antagonist only showed slight impact on basolateral HDM-induced Ca2+ mobilisation. HDM trypsin-like serine proteases were the main components leading to non-amiloride sensitive Ieq and also increased interleukin-33 (IL-33) and thymic stromal lymphopoietin (TSLP) from asthma hPBECs. These studies add further insight into the complex mechanisms associated with HDM-induced alterations in cell signalling and their relevance to pathological changes within asthma.


Subject(s)
Alarmins , Asthma , Humans , Animals , Trypsin , Epithelial Cells , Allergens/pharmacology , Pyroglyphidae
3.
Eur Respir Rev ; 32(168)2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37137509

ABSTRACT

Clinical management of cystic fibrosis (CF) has been greatly improved by the development of small molecule modulators of the CF transmembrane conductance regulator (CFTR). These drugs help to address some of the basic genetic defects of CFTR; however, no suitable CFTR modulators exist for 10% of people with CF (PWCF). An alternative, mutation-agnostic therapeutic approach is therefore still required. In CF airways, elevated levels of the proprotein convertase furin contribute to the dysregulation of key processes that drive disease pathogenesis. Furin plays a critical role in the proteolytic activation of the epithelial sodium channel; hyperactivity of which causes airways dehydration and loss of effective mucociliary clearance. Furin is also responsible for the processing of transforming growth factor-ß, which is increased in bronchoalveolar lavage fluid from PWCF and is associated with neutrophilic inflammation and reduced pulmonary function. Pathogenic substrates of furin include Pseudomonas exotoxin A, a major toxic product associated with Pseudomonas aeruginosa infection and the spike glycoprotein of severe acute respiratory syndrome coronavirus 2, the causative pathogen for coronavirus disease 2019. In this review we discuss the importance of furin substrates in the progression of CF airways disease and highlight selective furin inhibition as a therapeutic strategy to provide clinical benefit to all PWCF.


Subject(s)
COVID-19 , Cystic Fibrosis , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Furin/pharmacology , Furin/therapeutic use , Mucociliary Clearance
4.
Front Chem ; 10: 1006618, 2022.
Article in English | MEDLINE | ID: mdl-36247662

ABSTRACT

Serine proteases play varied and manifold roles in important biological, physiological, and pathological processes. These include viral, bacterial, and parasitic infection, allergic sensitization, tumor invasion, and metastasis. The use of activity-based profiling has been foundational in pinpointing the precise roles of serine proteases across this myriad of processes. A broad range of serine protease-targeted activity-based probe (ABP) chemotypes have been developed and we have recently introduced biotinylated and "clickable" peptides containing P1 N-alkyl glycine arginine N-hydroxy succinimidyl (NHS) carbamates as ABPs for detection/profiling of trypsin-like serine proteases. This present study provides synthetic details for the preparation of additional examples of this ABP chemotype, which function as potent irreversible inhibitors of their respective target serine protease. We describe their use for the activity-based profiling of a broad range of serine proteases including trypsin, the trypsin-like protease plasmin, chymotrypsin, cathepsin G, and neutrophil elastase (NE), including the profiling of the latter protease in clinical samples obtained from patients with cystic fibrosis.

5.
Front Chem ; 10: 782608, 2022.
Article in English | MEDLINE | ID: mdl-35529696

ABSTRACT

The trypsin-like proteases (TLPs) play widespread and diverse roles, in a host of physiological and pathological processes including clot dissolution, extracellular matrix remodelling, infection, angiogenesis, wound healing and tumour invasion/metastasis. Moreover, these enzymes are involved in the disruption of normal lung function in a range of respiratory diseases including allergic asthma where several allergenic proteases have been identified. Here, we report the synthesis of a series of peptide derivatives containing an N-alkyl glycine analogue of arginine, bearing differing electrophilic leaving groups (carbamate and triazole urea), and demonstrate their function as potent, irreversible inhibitors of trypsin and TLPs, to include activities from cockroach extract. As such, these inhibitors are suitable for use as activity probes (APs) in activity-based profiling (ABP) applications.

6.
Cell Chem Biol ; 29(6): 947-957.e8, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35202587

ABSTRACT

In cystic fibrosis (CF), excessive furin activity plays a critical role in the activation of the epithelial sodium channel (ENaC), dysregulation of which contributes to airway dehydration, ineffective mucociliary clearance (MCC), and mucus obstruction. Here, we report a highly selective, cell-permeable furin inhibitor, BOS-318, that derives selectivity by eliciting the formation of a new, unexpected binding pocket independent of the active site catalytic triad. Using human ex vivo models, BOS-318 showed significant suppression of ENaC, which led to enhanced airway hydration and an ∼30-fold increase in MCC rate. Furin inhibition also protected ENaC from subsequent activation by neutrophil elastase, a soluble protease dominant in CF airways. Additional therapeutic benefits include protection against epithelial cell death induced by Pseudomonas aeruginosa exotoxin A. Our findings demonstrate the utility of selective furin inhibition as a mutation-agnostic approach that can correct features of CF airway pathophysiology in a manner expected to deliver therapeutic value.


Subject(s)
Cystic Fibrosis , Furin , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Furin/antagonists & inhibitors , Humans , Mucociliary Clearance
7.
Int J Mol Sci ; 22(12)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198546

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a debilitating heterogeneous disease characterised by unregulated proteolytic destruction of lung tissue mediated via a protease-antiprotease imbalance. In COPD, the relationship between the neutrophil serine protease, neutrophil elastase, and its endogenous inhibitor, alpha-1-antitrypsin (AAT) is the best characterised. AAT belongs to a superfamily of serine protease inhibitors known as serpins. Advances in screening technologies have, however, resulted in many members of the serpin superfamily being identified as having differential expression across a multitude of chronic lung diseases compared to healthy individuals. Serpins exhibit a unique suicide-substrate mechanism of inhibition during which they undergo a dramatic conformational change to a more stable form. A limitation is that this also renders them susceptible to disease-causing mutations. Identification of the extent of their physiological/pathological role in the airways would allow further expansion of knowledge regarding the complexity of protease regulation in the lung and may provide wider opportunity for their use as therapeutics to aid the management of COPD and other chronic airways diseases.


Subject(s)
Pulmonary Disease, Chronic Obstructive/metabolism , Serine Proteases/metabolism , Serpins/metabolism , Animals , Disease Models, Animal , Humans , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/physiopathology , Serpins/chemistry , Serpins/therapeutic use
8.
Int J Mol Sci ; 22(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072295

ABSTRACT

Trypsin-like proteases (TLPs) belong to a family of serine enzymes with primary substrate specificities for the basic residues, lysine and arginine, in the P1 position. Whilst initially perceived as soluble enzymes that are extracellularly secreted, a number of novel TLPs that are anchored in the cell membrane have since been discovered. Muco-obstructive lung diseases (MucOLDs) are characterised by the accumulation of hyper-concentrated mucus in the small airways, leading to persistent inflammation, infection and dysregulated protease activity. Although neutrophilic serine proteases, particularly neutrophil elastase, have been implicated in the propagation of inflammation and local tissue destruction, it is likely that the serine TLPs also contribute to various disease-relevant processes given the roles that a number of these enzymes play in the activation of both the epithelial sodium channel (ENaC) and protease-activated receptor 2 (PAR2). More recently, significant attention has focused on the activation of viruses such as SARS-CoV-2 by host TLPs. The purpose of this review was to highlight key TLPs linked to the activation of ENaC and PAR2 and their association with airway dehydration and inflammatory signalling pathways, respectively. The role of TLPs in viral infectivity will also be discussed in the context of the inhibition of TLP activities and the potential of these proteases as therapeutic targets.


Subject(s)
COVID-19/enzymology , Lung Diseases, Obstructive/enzymology , SARS-CoV-2/metabolism , Trypsin/metabolism , Animals , COVID-19/pathology , Epithelial Sodium Channels/metabolism , Humans , Lung Diseases, Obstructive/pathology , Receptor, PAR-2/metabolism
9.
Genes (Basel) ; 12(3)2021 03 22.
Article in English | MEDLINE | ID: mdl-33810137

ABSTRACT

Cystic fibrosis (CF) is a life-limiting genetic disorder caused by loss-of-function mutations in the gene which codes for the CF transmembrane conductance regulator (CFTR) Cl- channel. Loss of Cl- secretion across the apical membrane of airway lining epithelial cells results in dehydration of the airway surface liquid (ASL) layer which impairs mucociliary clearance (MCC), and as a consequence promotes bacterial infection and inflammation of the airways. Interventions that restore airway hydration are known to improve MCC. Here we review the ion channels present at the luminal surface of airway epithelial cells that may be targeted to improve airway hydration and MCC in CF airways.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/physiopathology , Mucociliary Clearance , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Loss of Function Mutation , Respiratory Mucosa/metabolism , Respiratory Mucosa/pathology
10.
Crit Rev Microbiol ; 47(2): 192-205, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33455514

ABSTRACT

Haemophilus influenzae is the most common cause of bacterial infection in the lungs of chronic obstructive pulmonary disease (COPD) patients and contributes to episodes of acute exacerbation which are associated with increased hospitalization and mortality. Due to the ability of H. influenzae to adhere to host epithelial cells, initial colonization of the lower airways can progress to a persistent infection and biofilm formation. This is characterized by changes in bacterial behaviour such as reduced cellular metabolism and the production of an obstructive extracellular matrix (ECM). Herein we discuss the multiple mechanisms by which H. influenzae contributes to the pathogenesis of COPD. In particular, mechanisms that facilitate bacterial adherence to host airway epithelial cells, biofilm formation, and microbial persistence through immune system evasion and antibiotic tolerance will be discussed.


Subject(s)
Haemophilus Infections/microbiology , Haemophilus influenzae/growth & development , Pulmonary Disease, Chronic Obstructive/microbiology , Animals , Bacterial Adhesion , Haemophilus influenzae/genetics , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/physiology , Humans , Lung/microbiology
11.
Biomolecules ; 10(4)2020 03 28.
Article in English | MEDLINE | ID: mdl-32231120

ABSTRACT

Epithelial barrier dysfunction, characteristic of allergic airway disease may be, at least in part, due to the action of allergen-associated protease activities. Cockroach allergy is a major global health issue, with cockroaches containing considerable serine trypsin-like protease (TLP) activity. The present study sought to evaluate two novel protease inhibitors (PE-BBI and pLR-HL), recently isolated from amphibian skin secretions, for their potential to neutralise cockroach TLP activity and to determine any protective effect on cockroach-induced airway epithelial barrier disruption. Inhibitor potencies against the cockroach-associated activities were determined using a fluorogenic peptide substrate-based activity assay. 16HBE14o- cells (16HBE; a bronchial epithelial cell line) were treated with cockroach extract (CRE) in the presence or absence of the compounds in order to assess cell viability (RealTime Glo luminescent assay) and epithelial barrier disruption (transepithelial resistance and paracellular dextran flux). PE-BBI potently and selectively inhibited CRE TLP activity (pIC50 -8), but not host (16HBE) cell surface activity, which conferred protection of 16HBE cells from CRE-induced cell damage and barrier disruption. Novel protease inhibitor strategies such as PE-BBI may be useful for the treatment of allergic airway disease caused by cockroach proteases.


Subject(s)
Bronchi/cytology , Cockroaches/immunology , Serine Proteinase Inhibitors/pharmacology , Animals , Bronchi/immunology , Cell Line , Epithelium/drug effects , Epithelium/immunology , Epithelium/metabolism
13.
J Cyst Fibros ; 16(1): 49-57, 2017 01.
Article in English | MEDLINE | ID: mdl-27839953

ABSTRACT

BACKGROUND: Pathogenic bacteria which chronically colonise the cystic fibrosis (CF) lung produce a number of virulence determinants, including distinct proteolytic activities. The potential role bacterial proteases play on haemostatic dysregulation within the CF lung is, however, poorly defined, despite haemoptysis being a common complication in CF. METHODS: The potential impact of known CF pathogens (Pseudomonas aeruginosa and Burkholderia cepacia complex spp.) on haemostasis was examined for their ability to degrade fibrinogen and dysregulate fibrin clot formation and platelet aggregation. RESULTS: Results demonstrate that key CF pathogens growing as a biofilm on mucin exhibit considerable fibrinogenolytic activity, resulting in fibrinogen breakdown, impaired clot formation, and modulation of platelet aggregation. Human neutrophil elastase may also contribute to fibrinogen breakdown and dysregulated clot formation at high concentration. CONCLUSION: Bacterial-derived proteases may play an important role in the dysregulation of airway haemostasis, and potentially contribute to episodes of haemoptysis within the CF lung.


Subject(s)
Bacterial Proteins/metabolism , Biofilms , Burkholderia cepacia complex , Cystic Fibrosis , Hemoptysis , Lung , Peptide Hydrolases/metabolism , Pseudomonas aeruginosa , Burkholderia cepacia complex/isolation & purification , Burkholderia cepacia complex/physiology , Cystic Fibrosis/blood , Cystic Fibrosis/complications , Cystic Fibrosis/microbiology , Fibrin Clot Lysis Time/methods , Fibrinogen/metabolism , Hemoptysis/etiology , Hemoptysis/metabolism , Hemostasis/physiology , Humans , Lung/metabolism , Lung/microbiology , Platelet Aggregation/physiology , Protease Inhibitors/pharmacology , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/physiology , Statistics as Topic
14.
Biochem J ; 473(24): 4681-4697, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27784766

ABSTRACT

The key metabolic regulator, AMP-activated protein kinase (AMPK), is reported to be down-regulated in metabolic disorders, but the mechanisms are poorly characterised. Recent studies have identified phosphorylation of the AMPKα1/α2 catalytic subunit isoforms at Ser487/491, respectively, as an inhibitory regulation mechanism. Vascular endothelial growth factor (VEGF) stimulates AMPK and protein kinase B (Akt) in cultured human endothelial cells. As Akt has been demonstrated to be an AMPKα1 Ser487 kinase, the effect of VEGF on inhibitory AMPK phosphorylation in cultured primary human endothelial cells was examined. Stimulation of endothelial cells with VEGF rapidly increased AMPKα1 Ser487 phosphorylation in an Akt-independent manner, without altering AMPKα2 Ser491 phosphorylation. In contrast, VEGF-stimulated AMPKα1 Ser487 phosphorylation was sensitive to inhibitors of protein kinase C (PKC) and PKC activation using phorbol esters or overexpression of PKC-stimulated AMPKα1 Ser487 phosphorylation. Purified PKC and Akt both phosphorylated AMPKα1 Ser487 in vitro with similar efficiency. PKC activation was associated with reduced AMPK activity, as inhibition of PKC increased AMPK activity and phorbol esters inhibited AMPK, an effect lost in cells expressing mutant AMPKα1 Ser487Ala. Consistent with a pathophysiological role for this modification, AMPKα1 Ser487 phosphorylation was inversely correlated with insulin sensitivity in human muscle. These data indicate a novel regulatory role of PKC to inhibit AMPKα1 in human cells. As PKC activation is associated with insulin resistance and obesity, PKC may underlie the reduced AMPK activity reported in response to overnutrition in insulin-resistant metabolic and vascular tissues.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Protein Kinase C/metabolism , Cell Line , HEK293 Cells , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Serine/metabolism , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/pharmacology
15.
PLoS One ; 11(7): e0159868, 2016.
Article in English | MEDLINE | ID: mdl-27459298

ABSTRACT

Many bacterial and viral pathogens (or their toxins), including Pseudomonas aeruginosa exotoxin A, require processing by host pro-protein convertases such as furin to cause disease. We report the development of a novel irreversible inhibitor of furin (QUB-F1) consisting of a diphenyl phosphonate electrophilic warhead coupled with a substrate-like peptide (RVKR), that also includes a biotin tag, to facilitate activity-based profiling/visualisation. QUB-F1 displays greater selectivity for furin, in comparison to a widely used exemplar compound (furin I) which has a chloromethylketone warhead coupled to RVKR, when tested against the serine trypsin-like proteases (trypsin, prostasin and matriptase), factor Xa and the cysteine protease cathepsin B. We demonstrate QUB-F1 does not prevent P. aeruginosa exotoxin A-induced airway epithelial cell toxicity; in contrast to furin I, despite inhibiting cell surface furin-like activity to a similar degree. This finding indicates additional proteases, which are sensitive to the more broad-spectrum furin I compound, may be involved in this process.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Toxins/toxicity , Enzyme Inhibitors/pharmacology , Epithelial Cells/drug effects , Exotoxins/toxicity , Furin/antagonists & inhibitors , Oligopeptides/pharmacology , Organophosphonates/pharmacology , Anti-Bacterial Agents/chemical synthesis , Cells, Cultured , Enzyme Inhibitors/chemical synthesis , Epithelial Cells/microbiology , Humans , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Organophosphonates/chemical synthesis , Organophosphonates/chemistry , Pseudomonas aeruginosa/pathogenicity
16.
Am J Respir Crit Care Med ; 194(6): 701-10, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27014936

ABSTRACT

RATIONALE: In cystic fibrosis (CF) a reduction in airway surface liquid (ASL) height compromises mucociliary clearance, favoring mucus plugging and chronic bacterial infection. Inhibitors of the epithelial sodium channel (ENaC) have therapeutic potential in CF airways to reduce hyperstimulated sodium and fluid absorption to levels that can restore airway hydration. OBJECTIVES: To determine whether a novel compound (QUB-TL1) designed to inhibit protease/ENaC signaling in CF airways restores ASL volume and mucociliary function. METHODS: Protease activity was measured using fluorogenic activity assays. Differentiated primary airway epithelial cell cultures (F508del homozygotes) were used to determined ENaC activity (Ussing chamber recordings), ASL height (confocal microscopy), and mucociliary function (by tracking the surface flow of apically applied microbeads). Cell toxicity was measured using a lactate dehydrogenase assay. MEASUREMENTS AND MAIN RESULTS: QUB-TL1 inhibits extracellularly located channel activating proteases (CAPs), including prostasin, matriptase, and furin, the activities of which are observed at excessive levels at the apical surface of CF airway epithelial cells. QUB-TL1-mediated CAP inhibition results in diminished ENaC-mediated Na(+) absorption in CF airway epithelial cells caused by internalization of a prominent pool of cleaved (active) ENaCγ from the cell surface. Importantly, diminished ENaC activity correlates with improved airway hydration status and mucociliary clearance. We further demonstrate QUB-TL1-mediated furin inhibition, which is in contrast to other serine protease inhibitors (camostat mesylate and aprotinin), affords protection against neutrophil elastase-mediated ENaC activation and Pseudomonas aeruginosa exotoxin A-induced cell death. CONCLUSIONS: QUB-TL1 corrects aberrant CAP activities, providing a mechanism to delay or prevent the development of CF lung disease in a manner independent of CF transmembrane conductance regulator mutation.


Subject(s)
Arginine/analogs & derivatives , Cystic Fibrosis/drug therapy , Mucociliary Clearance/drug effects , Organophosphonates/pharmacology , Respiratory Mucosa/drug effects , Serine Endopeptidases/drug effects , Sodium Channel Blockers/therapeutic use , Sodium Channels/drug effects , Arginine/pharmacology , Cells, Cultured , Humans , Mucociliary Clearance/physiology , Respiratory Mucosa/cytology , Respiratory Mucosa/physiology , Sodium Channels/physiology
17.
J Cyst Fibros ; 10(6): 401-6, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21745765

ABSTRACT

BACKGROUND: The identification of filamentous fungi and/or yeasts in the airway secretions of individuals with cystic fibrosis (CF) is becoming increasingly prevalent; yet the importance of these organisms in relation to underlying inflammation is poorly defined. METHODS: Cystic fibrosis bronchial epithelial cells (CFBE) and human bronchial epithelial cells (HBE) were co-incubated with Candida albicans whole cells or Aspergillus fumigatus conidia for 24 h prior to the measurement of pro-inflammatory cytokines IL-6 and IL-8 by ELISA. RESULTS: Treatment of HBE or CFBE with C. albicans whole cells did not alter cytokine secretion. However treatment of CFBE with A. fumigatus conidia resulted in a 1.45-fold increase in IL-6 and a 1.65-fold increase in IL-8 secretion in comparison to basal levels; in contrast there was far less secretion from HBE cells. CONCLUSION: Our data indicate that A. fumigatus infection modulates a pro-inflammatory response in CF epithelial cells while C. albicans does not.


Subject(s)
Aspergillus fumigatus/isolation & purification , Candida albicans/isolation & purification , Epithelial Cells/microbiology , Inflammation/microbiology , Respiratory Mucosa/cytology , Respiratory Mucosa/microbiology , Cells, Cultured , Cystic Fibrosis/microbiology , Humans
18.
Vasc Cell ; 3: 9, 2011 Apr 20.
Article in English | MEDLINE | ID: mdl-21507243

ABSTRACT

BACKGROUND: Vascular endothelial growth factors (VEGFs) are key regulators of endothelial cell function and angiogenesis. We and others have previously demonstrated that VEGF-A stimulates AMP-activated protein kinase (AMPK) in cultured endothelial cells. Furthermore, AMPK has been reported to regulate VEGF-mediated angiogenesis. The role of AMPK in the function of VEGF-B remains undetermined, as does the role of AMPK in VEGF-stimulated endothelial cell proliferation, a critical process in angiogenesis. METHODS: Human aortic endothelial cells (HAECs) were incubated with VEGF-A and VEGF-B prior to examination of HAEC AMPK activity, proliferation, migration, fatty acid oxidation and fatty acid transport. The role of AMPK in the functional effects of VEGF-A and/or VEGF-B was assessed after downregulation of AMPK activity with chemical inhibitors or infection with adenoviruses expressing a dominant negative mutant AMPK. RESULTS: Incubation of HAECs with VEGF-B rapidly stimulated AMPK activity in a manner sensitive to an inhibitor of Ca2+/calmodulin-dependent kinase kinase (CaMKK), without increasing phosphorylation of endothelial NO synthase (eNOS) phosphorylation at Ser1177. Downregulation of AMPK abrogated HAEC proliferation in response to VEGF-A or VEGF-B. However, activation of AMPK by agents other than VEGF inhibited proliferation. Downregulation of AMPK abrogated VEGF-A-stimulated HAEC migration, whereas infection with adenoviruses expressing constitutively active mutant AMPK stimulated chemokinesis. Neither VEGF-A nor VEGF-B had any significant effect on HAEC fatty acid oxidation, yet prolonged incubation with VEGF-A stimulated fatty acid uptake in an AMPK-dependent manner. Inhibition of eNOS abrogated VEGF-mediated proliferation and migration, but was without effect on VEGF-stimulated fatty acid transport, ERK or Akt phosphorylation. CONCLUSIONS: These data suggest that VEGF-B stimulates AMPK by a CaMKK-dependent mechanism and stimulation of AMPK activity is required for proliferation in response to either VEGF-A or VEGF-B and migration in response to VEGF-A. AMPK activation alone was not sufficient, however, to stimulate proliferation in the absence of VEGF. VEGF-stimulated NO synthesis is required for the stimulation of proliferation by VEGF-A or VEGF-B, yet this may be independent of eNOS Ser1177 phosphorylation.

19.
J Biol Chem ; 283(17): 11210-7, 2008 Apr 25.
Article in English | MEDLINE | ID: mdl-18303014

ABSTRACT

The thiazolidinedione anti-diabetic drugs increase activation of endothelial nitric-oxide (NO) synthase by phosphorylation at Ser-1177 and increase NO bioavailability, yet the molecular mechanisms that underlie this remain poorly characterized. Several protein kinases, including AMP-activated protein kinase, have been demonstrated to phosphorylate endothelial NO synthase at Ser-1177. In the current study we determined the role of AMP-activated protein kinase in rosiglitazone-stimulated NO synthesis. Stimulation of human aortic endothelial cells with rosiglitazone resulted in the time- and dose-dependent stimulation of AMP-activated protein kinase activity and NO production with concomitant phosphorylation of endothelial NO synthase at Ser-1177. Rosiglitazone stimulated an increase in the ADP/ATP ratio in endothelial cells, and LKB1 was essential for rosiglitazone-stimulated AMPK activity in HeLa cells. Infection of endothelial cells with a virus encoding a dominant negative AMP-activated protein kinase mutant abrogated rosiglitazone-stimulated Ser-1177 phosphorylation and NO production. Furthermore, the stimulation of AMP-activated protein kinase and NO synthesis by rosiglitazone was unaffected by the peroxisome proliferator-activated receptor-gamma inhibitor GW9662. These studies demonstrate that rosiglitazone is able to acutely stimulate NO synthesis in cultured endothelial cells by an AMP-activated protein kinase-dependent mechanism, likely to be mediated by LKB1.


Subject(s)
Aorta/cytology , Aorta/metabolism , Endothelial Cells/cytology , Endothelium, Vascular/cytology , Hypoglycemic Agents/pharmacology , Multienzyme Complexes/metabolism , Nitric Oxide/metabolism , Protein Serine-Threonine Kinases/metabolism , Thiazolidinediones/pharmacology , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases , Cells, Cultured , HeLa Cells , Humans , Models, Biological , Nucleotides/chemistry , Phosphorylation , Rosiglitazone , U937 Cells
20.
Biochem Biophys Res Commun ; 354(4): 1084-8, 2007 Mar 23.
Article in English | MEDLINE | ID: mdl-17276402

ABSTRACT

Vascular endothelial growth factor (VEGF) is an important regulator of endothelial cell function. VEGF stimulates NO production, proposed to be a result of phosphorylation and activation of endothelial NO synthase (eNOS) at Ser1177. Phosphorylation of eNOS at this site also occurs after activation of AMP-activated protein kinase (AMPK) in cultured endothelial cells. We therefore determined whether AMPK mediates VEGF-stimulated NO synthesis in endothelial cells. VEGF caused a rapid, dose-dependent stimulation of AMPK activity, with a concomitant increase in phosphorylation of eNOS at Ser1177. Infection of endothelial cells with an adenovirus expressing a dominant negative mutant AMPK partially inhibited both VEGF-stimulated eNOS Ser1177 phosphorylation and NO production. VEGF-stimulated AMPK activity was completely inhibited by the Ca(2+)/calmodulin-dependent protein kinase kinase inhibitor, STO-609. Stimulation of AMPK via Ca(2+)/calmodulin-dependent protein kinase kinase represents a novel signalling mechanism utilised by VEGF in endothelial cells that contributes to eNOS phosphorylation and NO production.


Subject(s)
Endothelium, Vascular/physiology , Multienzyme Complexes/physiology , Nitric Oxide/biosynthesis , Protein Serine-Threonine Kinases/physiology , Vascular Endothelial Growth Factor A/metabolism , AMP-Activated Protein Kinases , Amino Acid Sequence , Androstadienes/pharmacology , Benzimidazoles/pharmacology , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Estrenes/pharmacology , Humans , Isoquinolines/pharmacology , Naphthalimides/pharmacology , Nitric Oxide Synthase Type III/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pyrrolidinones/pharmacology , Serine/metabolism , Type C Phospholipases/antagonists & inhibitors , Wortmannin
SELECTION OF CITATIONS
SEARCH DETAIL
...