Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(7): e29150, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601679

ABSTRACT

A novel eco-friendly high throughput continuous hydrothermal flow system was used to synthesise phase pure ZnO and doped ZnO in order to explore their properties for tissue engineering applications. Cerium, zirconium, and copper were introduced as dopants during flow synthesis of ZnO nanoparticles, Zirconium doped ZnO were successfully synthesised, however secondary phases of CeO and CuO were detected in X-ray diffraction (XRD). The nanoparticles were characterised using X-ray diffraction, Brunauer-Emmett-Teller (BET), Dynamic Light scattering Measurements, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR) and RAMAN spectroscopy was used to evaluate physical, chemical, and structural properties. The change in BET surface area was also significant, the surface area increased from 11.35 (ZnO_2) to 26.18 (ZrZnO_5). However. In case of CeZnO_5 and CuZnO_5 was not significant 13.68 (CeZnO_5) and 12.16 (CuZnO_5) respectively. Cell metabolic activity analysis using osteoblast-like cells (MG63) and human embryonic derived mesenchymal stem cells (hES-MP) demonstrated that doped ZnO nanoparticles supported higher cell metabolic activity compared to cells grown in standard media with no nanoparticles added, or pure zinc oxide nanoparticles. The ZrZnO_5 demonstrated the highest cell metabolic activity and non-cytotoxicity over the duration of 28 days as compared to un doped or Ce or Cu incorporated nanoparticles. The current data suggests that Zirconium doping positively enhances the properties of ZnO nanoparticles by increasing the surface area and cell proliferation. Therefore, are potential additives within biomaterials or for tissue engineering applications.

2.
Int J Mol Sci ; 25(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38396762

ABSTRACT

Osteosarcoma is a bone cancer primarily affecting teenagers. It has a poor prognosis and diminished quality of life after treatment due to chemotherapy side effects, surgical complications and post-surgical osteoporosis risks. The sulphated polysaccharide fucoidan, derived from brown algae, has been a subject of interest for its potential anti-cancer properties and its impact on bone regeneration. This study explores the influence of crude, low-molecular-weight (LMW, 10-50 kDa), medium-molecular-weight (MMW, 50-100 kDa) and high-molecular-weight (HMW, >100 kDa) fractions from Sargassum filipendula, harvested from the Colombian sea coast, as well as crude fucoidan from Fucus vesiculosus, on a specific human osteoprogenitor cell type, human embryonic-derived mesenchymal stem cells. Fourier transform infrared spectroscopy coupled with attenuated total reflection (FTIR-ATR) results showed the highest sulphation levels and lowest uronic acid content in crude extract from F. vesiculosus. There was a dose-dependent drop in focal adhesion formation, proliferation and osteogenic differentiation of cells for all fucoidan types, but the least toxicity was observed for LMW and MMW. Transmission electron microscopy (TEM), JC-1 (5,50,6,60-tetrachloro-1,10,3,30-tetraethylbenzimi-dazolylcarbocyanine iodide) staining and cytochrome c analyses confirmed mitochondrial damage, swollen ER and upregulated autophagy due to fucoidans, with the highest severity in the case of F. vesiculosus fucoidan. Stress-induced apoptosis-like cell death by F. vesiculosus fucoidan and stress-induced necrosis-like cell death by S. filipendula fucoidans were also confirmed. LMW and MMW doses of <200 ng/mL were the least toxic and showed potential osteoinductivity. This research underscores the multifaceted impact of fucoidans on osteoprogenitor cells and highlights the delicate balance between potential therapeutic benefits and the challenges involved in using fucoidans for post-surgery treatments in patients with osteosarcoma.


Subject(s)
Filipendula , Fucus , Osteosarcoma , Sargassum , Humans , Adolescent , Sargassum/chemistry , Fucus/chemistry , Osteogenesis , Quality of Life , Polysaccharides/pharmacology , Polysaccharides/chemistry , Osteosarcoma/drug therapy
3.
Curr Osteoporos Rep ; 21(6): 719-730, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37682373

ABSTRACT

PURPOSE OF REVIEW: The purpose of this review is to provide a background on osteocytes and the primary cilium, discussing the role it plays in osteocyte mechanosensing. RECENT FINDINGS: Osteocytes are thought to be the primary mechanosensing cells in bone tissue, regulating bone adaptation in response to exercise, with the primary cilium suggested to be a key mechanosensing mechanism in bone. More recent work has suggested that, rather than being direct mechanosensors themselves, primary cilia in bone may instead form a key chemo-signalling nexus for processing mechanoregulated signalling pathways. Recent evidence suggests that pharmacologically induced lengthening of the primary cilium in osteocytes may potentiate greater mechanotransduction, rather than greater mechanosensing. While more research is required to delineate the specific osteocyte mechanobiological molecular mechanisms governed by the primary cilium, it is clear from the literature that the primary cilium has significant potential as a therapeutic target to treat mechanoregulated bone diseases, such as osteoporosis.


Subject(s)
Mechanotransduction, Cellular , Osteocytes , Humans , Osteocytes/physiology , Mechanotransduction, Cellular/physiology , Cilia/physiology , Signal Transduction , Bone and Bones
4.
Front Chem ; 11: 1236944, 2023.
Article in English | MEDLINE | ID: mdl-37681209

ABSTRACT

High internal phase emulsion (HIPE) templating is a well-established method for the generation of polymeric materials with high porosity (>74%) and degree of interconnectivity. The porosity and pore size can be altered by adjusting parameters during emulsification, which affects the properties of the resulting porous structure. However, there remain challenges for the fabrication of polyHIPEs, including typically small pore sizes (∼20-50 µm) and the use of surfactants, which can limit their use in biological applications. Here, we present the use of gelatin, a natural polymer, during the formation of polyHIPE structures, through the use of two biodegradable polymers, polycaprolactone-methacrylate (PCL-M) and polyglycerol sebacate-methacrylate (PGS-M). When gelatin is used as the internal phase, it is capable of stabilising emulsions without the need for an additional surfactant. Furthermore, by changing the concentration of gelatin within the internal phase, the pore size of the resulting polyHIPE can be tuned. 5% gelatin solution resulted in the largest mean pore size, increasing from 53 µm to 80 µm and 28 µm to 94 µm for PCL-M and PGS-M respectively. In addition, the inclusion of gelatin further increased the mechanical properties of the polyHIPEs and increased the period an emulsion could be stored before polymerisation. Our results demonstrate the potential to use gelatin for the fabrication of surfactant-free polyHIPEs with macroporous structures, with potential applications in tissue engineering, environmental and agricultural industries.

5.
J Mater Chem B ; 10(40): 8111-8165, 2022 10 19.
Article in English | MEDLINE | ID: mdl-36205119

ABSTRACT

The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.


Subject(s)
Biocompatible Materials , Tissue Engineering , Tissue Engineering/methods , Biocompatible Materials/chemistry , Porosity
6.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142239

ABSTRACT

In the maxillofacial area, specifically the orbital floor, injuries can cause bone deformities in the head and face that are difficult to repair or regenerate. Treatment methodologies include use of polymers, metal, ceramics on their own and in combinations mainly for repair purposes, but little attention has been paid to identify suitable materials for orbital floor regeneration. Polyurethane (PU) and hydroxyapatite (HA) micro- or nano- sized with different percentages (25%, 40% & 60%) were used to fabricate bioactive tissue engineering (TE) scaffolds using solvent casting and particulate leaching methods. Mechanical and physical characterisation of TE scaffolds was investigated by tensile tests and SEM respectively. Chemical and structural properties of PU and PU/HA scaffolds were evaluated by infrared (IR) spectroscopy and Surface properties of the bioactive scaffold were analysed using attenuated total reflectance (ATR) sampling accessory coupled with IR. Cell viability, collagen formed, VEGF protein amount and vascularisation of bioactive TE scaffold were studied. IR characterisation confirmed the integration of HA in composite scaffolds, while ATR confirmed the significant amount of HA present at the top surface of the scaffold, which was a primary objective. The SEM images confirmed the pores' interconnectivity. Increasing the content of HA up to 40% led to an improvement in mechanical properties, and the incorporation of nano-HA was more promising than that of micro-HA. Cell viability assays (using MG63) confirmed biocompatibility and CAM assays confirmed vascularization, demonstrating that HA enhances vascularization. These properties make the resulting biomaterials very useful for orbital floor repair and regeneration.


Subject(s)
Polyurethanes , Vascular Endothelial Growth Factor A , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Bone Regeneration , Collagen , Durapatite/chemistry , Polyurethanes/chemistry , Porosity , Solvents , Tissue Engineering/methods , Tissue Scaffolds/chemistry
7.
Langmuir ; 38(36): 10953-10962, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36027593

ABSTRACT

Emulsion templating is a method that enables the production of highly porous and interconnected polymer foams called polymerized high internal phase emulsions (PolyHIPEs). Since emulsions are inherently unstable systems, they can be stabilized either by surfactants or by particles (Pickering HIPEs). Surfactant-stabilized HIPEs form materials with an interconnected porous structure, while Pickering HIPEs typically form closed pore materials. In this study, we describe a system that uses submicrometer polymer particles to stabilize the emulsions. Polymers fabricated from these Pickering emulsions exhibit, unlike traditional Pickering emulsions, highly interconnected large pore structures, and we related these structures to arrested coalescence. We describe in detail the morphological properties of this system and their dependence on different production parameters. This production method might provide an interesting alternative to poly-surfactant-stabilized-HIPEs, in particular where the application necessitates large pore structures.

8.
Front Bioeng Biotechnol ; 9: 672959, 2021.
Article in English | MEDLINE | ID: mdl-34760876

ABSTRACT

Biomimetic replication of the structural anisotropy of musculoskeletal tissues is important to restore proper tissue mechanics and function. Physical cues from the local micro-environment, such as matrix fiber orientation, may influence the differentiation and extracellular matrix (ECM) organization of osteogenic progenitor cells. This study investigates how scaffold fiber orientation affects the behavior of mature and progenitor osteogenic cells, the influence on secreted mineralized-collagenous matrix organization, and the resulting construct mechanical properties. Gelatin-coated electrospun poly(caprolactone) fibrous scaffolds were fabricated with either a low or a high degree of anisotropy and cultured with mature osteoblasts (MLO-A5s) or osteogenic mesenchymal progenitor cells (hES-MPs). For MLO-A5 cells, alkaline phosphatase (ALP) activity was highest, and more calcium-containing matrix was deposited onto aligned scaffolds. In contrast, hES-MPs, osteogenic mesenchymal progenitor cells, exhibited higher ALP activity, collagen, and calcium deposition on randomly orientated fibers compared with aligned counterparts. Deposited matrix was isotropic on random fibrous scaffolds, whereas a greater degree of anisotropy was observed in aligned fibrous constructs, as confirmed by second harmonic generation (SHG) and scanning electron microscope (SEM) imaging. This resulted in anisotropic mechanical properties on aligned constructs. This study indicates that mineralized-matrix deposition by osteoblasts can be controlled by scaffold alignment but that the early stages of osteogenesis may not benefit from culture on orientated scaffolds.

9.
Front Bioeng Biotechnol ; 8: 557111, 2020.
Article in English | MEDLINE | ID: mdl-33015017

ABSTRACT

Microfluidic-based tissue-on-a-chip devices have generated significant research interest for biomedical applications, such as pharmaceutical development, as they can be used for small volume, high throughput studies on the effects of therapeutics on tissue-mimics. Tissue-on-a-chip devices are evolving from basic 2D cell cultures incorporated into microfluidic devices to complex 3D approaches, with modern designs aimed at recapitulating the dynamic and mechanical environment of the native tissue. Thus far, most tissue-on-a-chip research has concentrated on organs involved with drug uptake, metabolism and removal (e.g., lung, skin, liver, and kidney); however, models of the drug metabolite target organs will be essential to provide information on therapeutic efficacy. Here, we develop an osteogenesis-on-a-chip device that comprises a 3D environment and fluid shear stresses, both important features of bone. This inexpensive, easy-to-fabricate system based on a polymerized High Internal Phase Emulsion (polyHIPE) supports proliferation, differentiation and extracellular matrix production of human embryonic stem cell-derived mesenchymal progenitor cells (hES-MPs) over extended time periods (up to 21 days). Cells respond positively to both chemical and mechanical stimulation of osteogenesis, with an intermittent flow profile containing rest periods strongly promoting differentiation and matrix formation in comparison to static and continuous flow. Flow and shear stresses were modeled using computational fluid dynamics. Primary cilia were detectable on cells within the device channels demonstrating that this mechanosensory organelle is present in the complex 3D culture environment. In summary, this device aids the development of 'next-generation' tools for investigating novel therapeutics for bone in comparison with standard laboratory and animal testing.

10.
Int J Bioprint ; 6(2): 265, 2020.
Article in English | MEDLINE | ID: mdl-32782992

ABSTRACT

Bone has a hierarchy of porosity that is often overlooked when creating tissue engineering scaffolds where pore sizes are typically confined to a single order of magnitude. High internal phase emulsion (HIPE) templating produces polymerized HIPEs (polyHIPEs): highly interconnected porous polymers which have two length scales of porosity covering the 1-100 µm range. However, additional larger scales of porosity cannot be introduced in the standard emulsion formulation. Researchers have previously overcome this by additively manufacturing emulsions; fabricating highly microporous struts into complex macroporous geometries. This is time consuming and expensive; therefore, here we assessed the feasibility of combining porogen leaching with emulsion templating to introduce additional macroporosity. Alginate beads between 275 and 780 µm were incorporated into the emulsion at 0, 50, and 100 wt%. Once polymerized, alginate was dissolved leaving highly porous polyHIPE scaffolds with added macroporosity. The compressive modulus of the scaffolds decreased as alginate porogen content increased. Cellular performance was assessed using MLO-A5 post-osteoblasts. Seeding efficiency was significantly higher and mineralized matrix deposition was more uniformly deposited throughout porogen leached scaffolds compared to plain polyHIPEs. Deep cell infiltration only occurred in porogen leached scaffolds as detected by histology and lightsheet microscopy. This study reveals a quick, low cost and simple method of producing multiscale porosity scaffolds for tissue engineering.

11.
ACS Appl Mater Interfaces ; 12(11): 12510-12524, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32100541

ABSTRACT

Tissue engineering (TE)-based bone grafts are favorable alternatives to autografts and allografts. Both biochemical properties and the architectural features of TE scaffolds are crucial in their design process. Synthetic polymers are attractive biomaterials to be used in the manufacturing of TE scaffolds, due to various advantages, such as being relatively inexpensive, enabling precise reproducibility, possessing tunable mechanical/chemical properties, and ease of processing. However, such scaffolds need modifications to improve their limited interaction with biological tissues. Structurally, multiscale porosity is advantageous over single-scale porosity; therefore, in this study, we have considered two key points in the design of a bone repair material; (i) manufacture of multiscale porous scaffolds made of photocurable polycaprolactone (PCL) by a combination of emulsion templating and three-dimensional (3D) printing and (ii) decoration of these scaffolds with the in vitro generated bone-like extracellular matrix (ECM) to create biohybrid scaffolds that have improved biological performance compared to PCL-only scaffolds. Multiscale porous scaffolds were fabricated, bone cells were cultured on them, and then they were decellularized. The biological performance of these constructs was tested in vitro and in vivo. Mesenchymal progenitors were seeded on PCL-only and biohybrid scaffolds. Cells not only showed improved attachment on biohybrid scaffolds but also exhibited a significantly higher rate of cell growth and osteogenic activity. The chick chorioallantoic membrane (CAM) assay was used to explore the angiogenic potential of the biohybrid scaffolds. The CAM assay indicated that the presence of the in vitro generated ECM on polymeric scaffolds resulted in higher angiogenic potential and a high degree of tissue infiltration. This study demonstrated that multiscale porous biohybrid scaffolds present a promising approach to improve bioactivity, encourage precursors to differentiate into mature bones, and to induce angiogenesis.


Subject(s)
Extracellular Matrix/chemistry , Neovascularization, Physiologic/drug effects , Osteogenesis/drug effects , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Angiogenesis Inducing Agents/chemistry , Angiogenesis Inducing Agents/pharmacology , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Chickens , Chorioallantoic Membrane/drug effects , Chorioallantoic Membrane/metabolism , Humans , Models, Biological , Polyesters/chemistry , Porosity , Printing, Three-Dimensional
12.
Mar Drugs ; 18(2)2020 Feb 08.
Article in English | MEDLINE | ID: mdl-32046368

ABSTRACT

Fucoidan is a brown algae-derived polysaccharide having several biomedical applications. This study simultaneously compares the anti-cancer activities of crude fucoidans from Fucus vesiculosus and Sargassum filipendula, and effects of low (LMW, 10-50 kDa), medium (MMW, 50-100 kDa) and high (HMW, >100 kDa) molecular weight fractions of S. filipendula fucoidan against osteosarcoma cells. Glucose, fucose and acid levels were lower and sulphation was higher in F. vesiculosus crude fucoidan compared to S. filipendula crude fucoidan. MMW had the highest levels of sugars, acids and sulphation among molecular weight fractions. There was a dose-dependent drop in focal adhesion formation and proliferation of cells for all fucoidan-types, but F. vesiculosus fucoidan and HMW had the strongest effects. G1-phase arrest was induced by F. vesiculosus fucoidan, MMW and HMW, however F. vesiculosus fucoidan treatment also caused accumulation in the sub-G1-phase. Mitochondrial damage occurred for all fucoidan-types, however F. vesiculosus fucoidan led to mitochondrial fragmentation. Annexin V/PI, TUNEL and cytochrome c staining confirmed stress-induced apoptosis-like cell death for F. vesiculosus fucoidan and features of stress-induced necrosis-like cell death for S. filipendula fucoidans. There was also variation in penetrability of different fucoidans inside the cell. These differences in anti-cancer activity of fucoidans are applicable for osteosarcoma treatment.


Subject(s)
Cell Line, Tumor/drug effects , Polysaccharides/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Fucus/chemistry , Humans , Mitochondria/drug effects , Molecular Weight , Osteosarcoma , Phaeophyceae/chemistry , Sargassum/chemistry
13.
Bioengineering (Basel) ; 7(1)2020 Jan 21.
Article in English | MEDLINE | ID: mdl-31972962

ABSTRACT

There is variability in the reported effects of compounds on osteoblasts arising from differences in experimental design and choice of cell type/origin. This makes it difficult to discern a compound's action outside its original study and compare efficacy between compounds. Here, we investigated five compounds frequently reported as anabolic for osteoblasts (17ß-estradiol (oestrogen), icariin, lactoferrin, lithium chloride, and menaquinone-4 (MK-4)) on human mesenchymal progenitors to assess their potential for bone tissue engineering with the aim of identifying a potential alternative to expensive recombinant growth factors such as bone morphogenetic protein 2 (BMP-2). Experiments were performed using the same culture conditions to allow direct comparison. The concentrations of compounds spanned two orders of magnitude to encompass the reported efficacious range and were applied continuously for 22 days. The effects on the proliferation (resazurin reduction and DNA quantification), osteogenic differentiation (alkaline phosphatase (ALP) activity), and mineralised matrix deposition (calcium and collagen quantification) were assessed. Of these compounds, only 10 µM MK-4 stimulated a significant anabolic response with 50% greater calcium deposition. Oestrogen and icariin had no significant effects, with the exception of 1 µM icariin, which increased the metabolic activity on days 8 and 22. 1000 µg/mL of lactoferrin and 10 mM lithium chloride both significantly reduced the mineralised matrix deposition in comparison to the vehicle control, despite the ALP activity being higher in lithium chloride-treated cells at day 15. This demonstrates that MK-4 is the most powerful stimulant of bone formation in hES-MPs of the compounds investigated, highlighting its potential in bone tissue engineering as a method of promoting bone formation, as well as its prospective use as an osteoporosis treatment.

14.
Biomed Phys Eng Express ; 6(2): 025007, 2020 02 18.
Article in English | MEDLINE | ID: mdl-33438633

ABSTRACT

Autologous cancellous-bone grafts are the current gold standard for therapeutic interventions in which bone-regeneration is desired. The main limitations of these implants are the need for a secondary surgical site, creating a wound on the patient, the limited availability of harvest-safe bone, and the lack of structural integrity of the grafts. Synthetic, resorbable, bone-regeneration materials could pose a viable treatment alternative, that could be implemented through 3D-printing. We present here the development of a polylactic acid-hydroxyapatite (PLA-HAp) composite that can be processed through a commercial-grade 3D-printer. We have shown that this material could be a viable option for the development of therapeutic implants for bone regeneration. Biocompatibility in vitro was demonstrated through cell viability studies using the osteoblastic MG63 cell-line, and we have also provided evidence that the presence of HAp in the polymer matrix enhances cell attachment and osteogenicity of the material. We have also provided guidelines for the optimal PLA-HAp ratio for this application, as well as further characterisation of the mechanical and thermal properties of the composite. This study encompasses the base for further research on the possibilities and safety of 3D-printable, polymer-based, resorbable composites for bone regeneration.


Subject(s)
Bone Regeneration , Durapatite/chemistry , Osteoblasts/cytology , Osteogenesis , Polyesters/chemistry , Printing, Three-Dimensional/instrumentation , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Humans , Tissue Engineering
15.
Materials (Basel) ; 12(16)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31434207

ABSTRACT

Guided bone regeneration is a common dental implant treatment where a barrier membrane (BM) is used between epithelial tissue and bone or bone graft to prevent the invasion of the fast-proliferating epithelial cells into the defect site to be able to preserve a space for infiltration of slower-growing bone cells into the periodontal defect site. In this study, a bilayer polycaprolactone (PCL) BM was developed by combining electrospinning and emulsion templating techniques. First, a 250 µm thick polymerised high internal phase emulsion (polyHIPE) made of photocurable PCL was manufactured and treated with air plasma, which was shown to enhance the cellular infiltration. Then, four solvent compositions were investigated to find the best composition for electrospinning a nanofibrous PCL barrier layer on PCL polyHIPE. The biocompatibility and the barrier properties of the electrospun layer were demonstrated over four weeks in vitro by histological staining. Following in vitro assessment of cell viability and cell migration, cell infiltration and the potential of PCL polyHIPE for supporting blood vessel ingrowth were further investigated using an ex-ovo chick chorioallantoic membrane assay. Our results demonstrated that the nanofibrous PCL electrospun layer was capable of limiting cell infiltration for at least four weeks, while PCL polyHIPE supported cell infiltration, calcium and mineral deposition of bone cells, and blood vessel ingrowth through pores.

16.
J Bone Miner Res ; 34(12): 2311-2326, 2019 12.
Article in English | MEDLINE | ID: mdl-31442332

ABSTRACT

Multiple myeloma is a plasma cell malignancy that causes debilitating bone disease and fractures, in which TGFß plays a central role. Current treatments do not repair existing damage and fractures remain a common occurrence. We developed a novel low tumor phase murine model mimicking the plateau phase in patients as we hypothesized this would be an ideal time to treat with a bone anabolic. Using in vivo µCT we show substantial and rapid bone lesion repair (and prevention) driven by SD-208 (TGFß receptor I kinase inhibitor) and chemotherapy (bortezomib and lenalidomide) in mice with human U266-GFP-luc myeloma. We discovered that lesion repair occurred via an intramembranous fracture repair-like mechanism and that SD-208 enhanced collagen matrix maturation to significantly improve fracture resistance. Lesion healing was associated with VEGFA expression in woven bone, reduced osteocyte-derived PTHrP, increased osteoblasts, decreased osteoclasts, and lower serum tartrate-resistant acid phosphatase 5b (TRACP-5b). SD-208 also completely prevented bone lesion development in mice with aggressive JJN3 tumors, and was more effective than an anti-TGFß neutralizing antibody (1D11). We also discovered that SD-208 promoted osteoblastic differentiation (and overcame the TGFß-induced block in osteoblastogenesis) in myeloma patient bone marrow stromal cells in vitro, comparable to normal donors. The improved bone quality and fracture-resistance with SD-208 provides incentive for clinical translation to improve myeloma patient quality of life by reducing fracture risk and fatality. © 2019 American Society for Bone and Mineral Research.


Subject(s)
Collagen/metabolism , Fractures, Bone/pathology , Multiple Myeloma/pathology , Transforming Growth Factor beta/antagonists & inhibitors , Wound Healing , Alkaline Phosphatase/metabolism , Animals , Bone Remodeling/drug effects , Bortezomib/pharmacology , Bortezomib/therapeutic use , Cancellous Bone/drug effects , Cancellous Bone/pathology , Disease Models, Animal , Female , Fractures, Bone/complications , Green Fluorescent Proteins/metabolism , Humans , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mice , Mice, SCID , Multiple Myeloma/diagnostic imaging , Multiple Myeloma/drug therapy , Organ Size/drug effects , Osteoblasts/metabolism , Osteoclasts/drug effects , Osteoclasts/metabolism , Parathyroid Hormone-Related Protein/metabolism , Pteridines/pharmacology , Pteridines/therapeutic use , Transforming Growth Factor beta/metabolism , Vascular Endothelial Growth Factor A/metabolism , Wound Healing/drug effects , X-Ray Microtomography
17.
J Mech Behav Biomed Mater ; 96: 193-203, 2019 08.
Article in English | MEDLINE | ID: mdl-31054514

ABSTRACT

Ti foams are advanced materials with great potential for biomedical applications as they can promote bone ingrowth, cell migration and attachment through providing interconnected porous channels that allow the penetration of the bone-forming cells and provide them with anchorage sites. However, Ti is a bio-inert material and thus only mechanical integration is achieved between the porous implant and the surrounding tissue, not the chemical integration which would be desirable. In this work particles of a biologically active material (Hydroxyapatite, HA) are blended with titanium powder, and used to produce Ti foams through the use of Metal Injection Moulding (MIM) in combination with a space holder. This produces titanium foams with incorporated HA, potentially inducing more favourable bone response to an implant from the surrounding tissue and improving the osseointegration of the Ti foams. To be able to do this, samples need to show sufficient mechanical and biocompatibility properties, and the foams produced were assessed for their mechanical behaviour and in vitro biological response. It was found that the incorporation of high levels of HA into the Ti foams induces brittleness in the structure and reduces the load bearing ability of the titanium foams as the chemical interaction between Ti and HA results in weak ceramic phases. However, adding small amounts of HA (about 2 vol%) was found to increase the yield strength of the Ti foams by 61% from 31.6 MPa to 50.9 MPa. Biological tests were also carried out in order to investigate the suitability of the foams for biomedical applications. It was found that Ti foams both with and without HA (at the 2 vol% addition level) support calcium and collagen production and have a good level of biocompatibility, with no significant difference observed between samples with and without the HA addition.


Subject(s)
Biocompatible Materials/chemistry , Durapatite/chemistry , Titanium/chemistry , Animals , Materials Testing , Mice , Osteoblasts/cytology , Osteoblasts/drug effects , Porosity , Titanium/pharmacology
18.
Biofabrication ; 11(3): 035026, 2019 06 12.
Article in English | MEDLINE | ID: mdl-31071692

ABSTRACT

Lesions of tendons and ligaments account for over 40% of the musculoskeletal lesions. Surgical techniques and materials for repair and regeneration are currently not satisfactory. The high rate of post-operative complications and failures mainly relates to the technical difficulties in replicating the complex multiscale hierarchical structure and the mechanical properties of the native tendons and ligaments. With the aim of overcoming the limitations of non-biomimetic devices, we developed a hierarchical structure replicating the organization of tendons and ligaments. The scaffold consists of multiple bundles made of resorbable electrospun nanofibers of Poly-L-Lactic acid (PLLA) having tailored dimensions, wrapped in a sheath of nanofibers able to compact the construct. The bundles in turn consist of electrospun nanofibers with a preferential direction. High-resolution x-ray tomographic investigation at nanometer resolution confirmed that the morphology of the single bundles and of the entire scaffold replicated the hierarchical arrangement in the natural tendons and ligaments. To confirm that these structures could adequately restore tendons and ligaments, we measured the tensile stiffness, strength and toughness. The mechanical properties were in the range required to replace and repair tendons and ligaments. Furthermore, human fibroblasts were able to attach to the scaffolds and showed an increase in cell number, indicated by an increase in metabolic activity over time. Fibroblasts were preferentially aligned along the electrospun nanofibers. These encouraging in vitro results open the way for the next steps towards in vivo regeneration of tendons and ligaments.


Subject(s)
Ligaments/physiology , Regeneration/physiology , Tendons/physiology , Tissue Scaffolds/chemistry , Cell Proliferation , Fibroblasts/cytology , Humans , Polyesters/chemistry , Tensile Strength , Tissue Engineering
19.
J Mech Behav Biomed Mater ; 94: 259-266, 2019 06.
Article in English | MEDLINE | ID: mdl-30928670

ABSTRACT

Single-cell technologies are powerful tools to evaluate cell characteristics. In particular, Atomic Force Microscopy (AFM) nanoindentation experiments have been widely used to study single cell mechanical properties. One important aspect related to single cell techniques is the need for sufficient statistical power to obtain reliable results. This aspect is often overlooked in AFM experiments were sample sizes are arbitrarily set. The aim of the present work was to propose a tool for sample size estimation in the context of AFM nanoindentation experiments of single cell. To this aim, a retrospective approach was used by acquiring a large dataset of experimental measurements on four bone cell types and by building saturation curves for increasing sample sizes with a bootstrap resampling method. It was observed that the coefficient of variation (CV%) decayed with a function of the form y = axb with similar parameters for all samples tested and that sample sizes of 21 and 83 cells were needed for the specific cells and protocol employed if setting a maximum threshold on CV% of 10% or 5%, respectively. The developed tool is made available as an open-source repository and guidelines are provided for its use for AFM nanoindentation experimental design.


Subject(s)
Mechanical Phenomena , Microscopy, Atomic Force , Nanotechnology , 3T3 Cells , Animals , Biomechanical Phenomena , Mice , Single-Cell Analysis
20.
J Mech Behav Biomed Mater ; 90: 20-29, 2019 02.
Article in English | MEDLINE | ID: mdl-30342276

ABSTRACT

Dental implants need to support good osseointegration into the surrounding bone for full functionality. Interconnected porous structures have a lower stiffness and larger surface area compared with bulk structures, and therefore are likely to enable better bone-implant fixation. In addition, grading of the porosity may enable large pores for ingrowth on the periphery of an implant and a denser core to maintain mechanical properties. However, given the small diameter of dental implants it is very challenging to achieve gradations in porosity. This paper investigates the use of Selective Laser Melting (SLM) to produce a range of titanium structures with regular and graded porosity using various CAD models. This includes a novel 'Spider Web' design and lattices built on a diamond unit cell. Well-formed interconnecting porous structures were successfully developed in a one-step process. Mechanical testing indicated that the compression stiffness of the samples was within the range for cancellous bone tissue. Characterization by scanning electron microscopy (SEM) and X-ray micro-computed tomography (µCT) indicated the designed porosities were well-replicated. The structures supported bone cell growth and deposition of bone extracellular matrix.


Subject(s)
Dental Materials/chemistry , Lasers , Phase Transition , Titanium/chemistry , Alloys , Calcium/metabolism , Cell Survival/drug effects , Collagen/metabolism , Dental Materials/pharmacology , Materials Testing , Models, Molecular , Molecular Conformation , Porosity , Titanium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...