Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
bioRxiv ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39229160

ABSTRACT

Extracellular vesicles (EVs) are heterogenous in size, biogenesis, cargo and function. Beside small EVs, aggressive tumor cells release a population of particularly large EVs, namely large oncosomes (LO). This study provides the first resource of label-free quantitative proteomics of LO and small EVs obtained from distinct cancer cell types (prostate, breast, and glioma). This dataset was integrated with a SWATH Proteomic assay on LO, rigorously isolated from the plasma of patients with metastatic prostate cancer (PC). Proteins enriched in LO, which were identified also at the RNA level, and found in plasma LO significantly correlated with PC progression. Single EV RNA-Seq of the PC cell-derived LO confirmed some of the main findings from the bulk RNA-Seq, providing first evidence that single cell technologies can be successfully applied to EVs. This multiomics resource of cancer EVs can be leveraged for developing a multi-analyte approach for liquid biopsy.

2.
Nat Genet ; 56(9): 1878-1889, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39160255

ABSTRACT

Multiple myeloma is a treatable, but currently incurable, hematological malignancy of plasma cells characterized by diverse and complex tumor genetics for which precision medicine approaches to treatment are lacking. The Multiple Myeloma Research Foundation's Relating Clinical Outcomes in Multiple Myeloma to Personal Assessment of Genetic Profile study ( NCT01454297 ) is a longitudinal, observational clinical study of newly diagnosed patients with multiple myeloma (n = 1,143) where tumor samples are characterized using whole-genome sequencing, whole-exome sequencing and RNA sequencing at diagnosis and progression, and clinical data are collected every 3 months. Analyses of the baseline cohort identified genes that are the target of recurrent gain-of-function and loss-of-function events. Consensus clustering identified 8 and 12 unique copy number and expression subtypes of myeloma, respectively, identifying high-risk genetic subtypes and elucidating many of the molecular underpinnings of these unique biological groups. Analysis of serial samples showed that 25.5% of patients transition to a high-risk expression subtype at progression. We observed robust expression of immunotherapy targets in this subtype, suggesting a potential therapeutic option.


Subject(s)
DNA Copy Number Variations , Multiple Myeloma , Humans , Multiple Myeloma/genetics , Gene Expression Regulation, Neoplastic , Exome Sequencing , Gene Expression Profiling , Female , Male , Whole Genome Sequencing , Longitudinal Studies , Disease Progression , Middle Aged
3.
Nat Commun ; 15(1): 5815, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987616

ABSTRACT

The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.


Subject(s)
Alzheimer Disease , Single-Cell Analysis , Transcriptome , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Male , Female , Aged , Microglia/metabolism , Aged, 80 and over , Oligodendroglia/metabolism , Middle Aged , Immunoglobulin G/metabolism , Gene Regulatory Networks , Sequence Analysis, RNA , Brain/metabolism , Brain/pathology , Gene Expression Profiling
4.
J Appl Physiol (1985) ; 137(2): 262-273, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38932684

ABSTRACT

Resistance training (RT) remains the most effective treatment for age-related declines in muscle mass. However, many older adults experience attenuated muscle hypertrophy in response to RT when compared with younger adults. This may be attributed to underlying molecular processes that are dysregulated by aging and exacerbated by improperly prescribed RT weekly volume, intensity, and/or frequency doses. MicroRNAs (miRNAs) are key epigenetic regulators that impact signaling pathways and protein expression within cells, are dynamic and responsive to exercise stimuli, and are often dysregulated in diseases. In this study, we used untargeted miRNA-seq to examine miRNA in skeletal muscle and serum-derived exosomes of older adults (n = 18, 11 M/7 F, 66 ± 1 yr) who underwent three times per wk RT for 30 wk [e.g., high intensity three times/wk (HHH, n = 9) or alternating high-low-high (HLH) intensity (n = 9)], after a standardized 4-wk washin. Within each tissue, miRNAs were clustered into modules based on pairwise correlation using weighted gene correlation network analysis (WGCNA). Modules were tested for association with the magnitude of RT-induced thigh lean mass (TLM) change [as measured by dual-energy X-ray absorptiometry (DXA)]. Although no modules were unique to training dose, we identified miRNA modules in skeletal muscle associated with TLM gains irrespective of exercise dose. Using miRNA-target interactions, we analyzed key miRNAs in significant modules for their potential regulatory involvement in biological pathways. Findings point toward potential miRNAs that may be informative biomarkers and could also be evaluated as potential therapeutic targets as an adjuvant to RT to maximize skeletal muscle mass accrual in older adults.NEW & NOTEWORTHY In this work, we identified a set of microRNAs correlated with thigh lean mass gains in a group of older adults. To our knowledge, this is the first time these microRNAs have been identified as novel predictive biomarkers correlating with lean mass gains in aging adults. As biomarkers, these may help interventionalists identify older individuals that are positively responding to an exercise intervention.


Subject(s)
MicroRNAs , Muscle, Skeletal , Resistance Training , Thigh , Humans , Resistance Training/methods , MicroRNAs/genetics , MicroRNAs/metabolism , Male , Aged , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Female , Aging/physiology , Aging/genetics , Exosomes/metabolism , Middle Aged , Body Composition/physiology
5.
bioRxiv ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37961404

ABSTRACT

The emergence of technologies that can support high-throughput profiling of single cell transcriptomes offers to revolutionize the study of brain tissue from persons with and without Alzheimer's disease (AD). Integration of these data with additional complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link observed cell subpopulations and molecular network features within a broader disease-relevant context. We report here single nucleus RNA sequencing (snRNA-seq) profiles generated from superior frontal gyrus cortical tissue samples from 101 exceptionally well characterized, aged subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in peripheral hematological lab parameters, with these observations replicated in an independent, prospective cohort study of ageing and dementia. We also observed an AD-associated CD83(+) microglial subtype with unique molecular networks that encompass many known regulators of AD-relevant microglial biology, and which are associated with immunoglobulin IgG4 production in the transverse colon. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal novel disease biology. The transcriptomic, genetic, phenotypic, and network data resources described within this study are available for access and utilization by the scientific community.

6.
Physiol Genomics ; 55(4): 194-212, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36939205

ABSTRACT

Acute exercise elicits dynamic transcriptional changes that, when repeated, form the fundamental basis of health, resilience, and performance adaptations. While moderate-intensity endurance training combined with conventional resistance training (traditional, TRAD) is often prescribed and recommended by public health guidance, high-intensity training combining maximal-effort intervals with intensive, limited-rest resistance training is a time-efficient alternative that may be used tactically (HITT) to confer similar benefits. Mechanisms of action of these distinct stimuli are incompletely characterized and have not been directly compared. We assessed transcriptome-wide responses in skeletal muscle and circulating extracellular vesicles (EVs) to a single exercise bout in young adults randomized to TRAD (n = 21, 12 M/9 F, 22 ± 3 yr) or HITT (n = 19, 11 M/8 F, 22 ± 2 yr). Next-generation sequencing captured small, long, and circular RNA in muscle and EVs. Analysis identified differentially expressed transcripts (|log2FC|>1, FDR ≤ 0.05) immediately (h0, EVs only), h3, and h24 postexercise within and between exercise protocols. In aaddition, all apparently responsive transcripts (FDR < 0.2) underwent singular value decomposition to summarize data structures into latent variables (LVs) to deconvolve molecular expression circuits and interregulatory relationships. LVs were compared across time and exercise protocol. TRAD, a longer but less intense stimulus, generally elicited a stronger transcriptional response than HITT, but considerable overlap and key differences existed. Findings reveal shared and unique molecular responses to the exercise stimuli and lay groundwork toward establishing relationships between protein-coding genes and lesser-understood transcripts that serve regulatory roles following exercise. Future work should advance the understanding of these circuits and whether they repeat in other populations or following other types of exercise/stress.NEW & NOTEWORTHY We examined small and long transcriptomics in skeletal muscle and serum-derived extracellular vesicles before and after a single exposure to traditional combined exercise (TRAD) and high-intensity tactical training (HITT). Across 40 young adults, we found more consistent protein-coding gene responses to TRAD, whereas HITT elicited differential expression of microRNA enriched in brain regions. Follow-up analysis revealed relationships and temporal dynamics across transcript networks, highlighting potential avenues for research into mechanisms of exercise response and adaptation.


Subject(s)
Resistance Training , Transcriptome , Humans , Young Adult , Transcriptome/genetics , Exercise/physiology , Gene Expression Profiling , Muscle, Skeletal/metabolism
7.
Cell Genom ; 3(3): 100261, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36950378

ABSTRACT

The Foundational Data Initiative for Parkinson Disease (FOUNDIN-PD) is an international collaboration producing fundamental resources for Parkinson disease (PD). FOUNDIN-PD generated a multi-layered molecular dataset in a cohort of induced pluripotent stem cell (iPSC) lines differentiated to dopaminergic (DA) neurons, a major affected cell type in PD. The lines were derived from the Parkinson's Progression Markers Initiative study, which included participants with PD carrying monogenic PD variants, variants with intermediate effects, and variants identified by genome-wide association studies and unaffected individuals. We generated genetic, epigenetic, regulatory, transcriptomic, and longitudinal cellular imaging data from iPSC-derived DA neurons to understand molecular relationships between disease-associated genetic variation and proximate molecular events. These data reveal that iPSC-derived DA neurons provide a valuable cellular context and foundational atlas for modeling PD genetic risk. We have integrated these data into a FOUNDIN-PD data browser as a resource for understanding the molecular pathogenesis of PD.

8.
Physiol Genomics ; 54(12): 501-513, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36278270

ABSTRACT

The ability of individuals with end-stage osteoarthritis (OA) to functionally recover from total joint arthroplasty is highly inconsistent. The molecular mechanisms driving this heterogeneity have yet to be elucidated. Furthermore, OA disproportionately impacts females, suggesting a need for identifying female-specific therapeutic targets. We profiled the skeletal muscle transcriptome in females with end-stage OA (n = 20) undergoing total knee or hip arthroplasty using RNA-Seq. Single-gene differential expression (DE) analyses tested for DE genes between skeletal muscle overlaying the surgical (SX) joint and muscle from the contralateral (CTRL) leg. Network analyses were performed using Pathway-Level Information ExtractoR (PLIER) to summarize genes into latent variables (LVs), i.e., gene circuits, and link them to biological pathways. LV differences in SX versus CTRL muscle and across sources of muscle tissue (vastus medialis, vastus lateralis, or tensor fascia latae) were determined with ANOVA. Linear models tested for associations between LVs and muscle phenotype on the SX side (inflammation, function, and integrity). DE analysis revealed 360 DE genes (|Log2 fold-difference| ≥ 1, FDR ≤ 0.05) between the SX and CTRL limbs, many associated with inflammation and lipid metabolism. PLIER analyses revealed circuits associated with protein degradation and fibro-adipogenic cell gene expression. Muscle inflammation and function were linked to an LV associated with endothelial cell gene expression highlighting a potential regulatory role of endothelial cells within skeletal muscle. These findings may provide insight into potential therapeutic targets to improve OA rehabilitation before and/or following total joint replacement.


Subject(s)
Arthroplasty, Replacement, Hip , Arthroplasty, Replacement, Knee , Osteoarthritis , Female , Humans , Endothelial Cells , Knee Joint , Osteoarthritis/genetics , Muscle, Skeletal
9.
Front Cell Dev Biol ; 10: 804164, 2022.
Article in English | MEDLINE | ID: mdl-35317387

ABSTRACT

One promising goal for utilizing the molecular information circulating in biofluids is the discovery of clinically useful biomarkers. Extracellular RNAs (exRNAs) are one of the most diverse classes of molecular cargo, easily assayed by sequencing and with expressions that rapidly change in response to subject status. Despite diverse exRNA cargo, most evaluations from biofluids have focused on small RNA sequencing and analysis, specifically on microRNAs (miRNAs). Another goal of characterizing circulating molecular information, is to correlate expression to injuries associated with specific tissues of origin. Biomarker candidates are often described as being specific, enriched in a particular tissue or associated with a disease process. Likewise, miRNA data is often reported to be specific, enriched for a tissue, without rigorous testing to support the claim. Here we provide a tissue atlas of small RNAs from 30 different tissues and three different blood cell types. We analyzed the tissues for enrichment of small RNA sequences and assessed their expression in biofluids: plasma, cerebrospinal fluid, urine, and saliva. We employed published data sets representing physiological (resting vs. acute exercise) and pathologic states (early- vs. late-stage liver fibrosis, and differential subtypes of stroke) to determine differential tissue-enriched small RNAs. We also developed an online tool that provides information about exRNA sequences found in different biofluids and tissues. The data can be used to better understand the various types of small RNA sequences in different tissues as well as their potential release into biofluids, which should help in the validation or design of biomarker studies.

10.
Sci Data ; 8(1): 276, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34711851

ABSTRACT

Circular RNA (circRNA) are a recently discovered class of RNA characterized by a covalently-bonded back-splice junction. As circRNAs are inherently more stable than other RNA species, they may be detected extracellularly in peripheral biofluids and provide novel biomarkers. While circRNA have been identified previously in peripheral biofluids, there are few datasets for circRNA junctions from healthy controls. We collected 134 plasma and 114 urine samples from 54 healthy, male college athlete volunteers, and used RNASeq to determine circRNA content. The intersection of six bioinformatic tools identified 965 high-confidence, characteristic circRNA junctions in plasma and 72 in urine. Highly-expressed circRNA junctions were validated by qRT-PCR. Longitudinal samples were collected from a subset, demonstrating circRNA expression was stable over time. Lastly, the ratio of circular to linear transcripts was higher in plasma than urine. This study provides a valuable resource for characterization of circRNA in plasma and urine from healthy volunteers, one that can be developed and reassessed as researchers probe the circRNA contents of biofluids across physiological changes and disease states.


Subject(s)
Athletes , RNA, Circular/blood , RNA, Circular/urine , Adolescent , Healthy Volunteers , Humans , Male , RNA-Seq , Young Adult
11.
iScience ; 24(8): 102847, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34381972

ABSTRACT

We investigated whether extracellular vesicles (EVs) produced under hyperglycemic conditions could communicate signaling to drive atherosclerosis. We did so by treating Apoe-/- mice with exosomes produced by bone marrow-derived macrophages (BMDM) exposed to high glucose (BMDM-HG-exo) or control. Infusions of BMDM-HG-exo increased hematopoiesis, circulating myeloid cell numbers, and atherosclerotic lesions with an accumulation of macrophage foam and apoptotic cells. Transcriptome-wide analysis of cultured macrophages treated with BMDM-HG-exo or plasma EVs isolated from subjects with type II diabetes revealed a reduced inflammatory state and increased metabolic activity. Furthermore, BMDM-HG-exo induced cell proliferation and reprogrammed energy metabolism by increasing glycolytic activity. Lastly, profiling microRNA in BMDM-HG-exo and plasma EVs from diabetic subjects with advanced atherosclerosis converged on miR-486-5p as commonly enriched and recognized in dysregulated hematopoiesis and Abca1 control. Together, our findings show that EVs serve to communicate detrimental properties of hyperglycemia to accelerate atherosclerosis in diabetes.

12.
Neuroimage ; 222: 117243, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32822813

ABSTRACT

We have previously demonstrated cross-sectional differences in magnetic resonance imaging (MRI) measurements of white matter myelin and gray matter in infants with or without the apolipoprotein ε4 allele, a major genetic risk factor for late-onset Alzheimer's disease (AD). In this study, we sought to compare longitudinal MRI white matter myelin and cognitive-behavioral changes in infants and young children with and without this allele. Serial MRI and cognitive tests were obtained on 223 infants and young children, including 74 ε4 carriers and 149 non-carriers, 2-68 months of age, matched for age, gestational duration, birth weight, sex ratio, maternal age, education, and socioeconomic status. Automated brain mapping algorithms and non-linear mixed models were used to characterize and compare trajectories of white matter myelin and cognitive-behavioral test scores. The APOE ε4 carriers had statistically significant differences in white matter myelin development, in the uncinate fasciculus, temporal lobe, internal capsule and occipital lobe. Additionally, ε4 carriers had a slightly greater rate of development in early learning composite a surrogate measure of IQ representative of expressive language, receptive language, fine motor, and visual skills, but displayed slightly lower non verbal development quotient scores a composite measure of fine motor and visual skills across the entire age range. This study supports the possibility that ε4 carriers have slightly altered rates of white matter and cognitive development in childhood. It continues to raise questions about the role of APOE in human brain development and the relevance of these developmental differences to the predisposition to AD.


Subject(s)
Apolipoprotein E4/genetics , Cognition/physiology , Myelin Sheath/genetics , White Matter/pathology , Aging/genetics , Alleles , Brain/pathology , Brain/physiopathology , Child , Child, Preschool , Cross-Sectional Studies , Female , Heterozygote , Humans , Infant , Male , Myelin Sheath/metabolism , Nerve Net/pathology , Nerve Net/physiopathology
13.
iScience ; 23(6): 101182, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32512385

ABSTRACT

The recent discovery of extracellular RNAs in blood, including RNAs in extracellular vesicles (EVs), combined with low-input RNA-sequencing advances have enabled scientists to investigate their role in human disease. To date, most studies have been focusing on small RNAs, and methodologies to optimize long RNAs measurement are lacking. We used plasma RNA to assess the performance of six long RNA sequencing methods, at two different sites, and we report their differences in reads (%) mapped to the genome/transcriptome, number of genes detected, long RNA transcript diversity, and reproducibility. Using the best performing method, we further compare the profile of long RNAs in the EV- and no-EV-enriched RNA plasma compartments. These results provide insights on the performance and reproducibility of commercially available kits in assessing the landscape of long RNAs in human plasma and different extracellular RNA carriers that may be exploited for biomarker discovery.

14.
Nat Med ; 25(11): 1680-1683, 2019 11.
Article in English | MEDLINE | ID: mdl-31686034

ABSTRACT

We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease.


Subject(s)
Alzheimer Disease/genetics , Apolipoprotein E3/genetics , Neurodegenerative Diseases/genetics , Presenilin-1/genetics , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid/genetics , Amyloid/metabolism , Apolipoprotein E2/genetics , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Female , Homozygote , Humans , Male , Mutation/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Pedigree
15.
J Extracell Vesicles ; 8(1): 1685634, 2019.
Article in English | MEDLINE | ID: mdl-31741725

ABSTRACT

Biofluid-accessible extracellular vesicles (EVs) may represent a new means to improve the sensitivity and specificity of detecting disease. However, current methods to isolate EVs encounter challenges when they are used to select specific populations. Moreover, it has been difficult to comprehensively characterize heterogeneous EV populations at the single vesicle level. Here, we robustly assessed heterogeneous EV populations from cultured cell lines via nanoparticle tracking analysis, proteomics, transcriptomics, transmission electron microscopy, and quantitative single molecule localization microscopy (qSMLM). Using qSMLM, we quantified the size and biomarker content of individual EVs. We applied qSMLM to patient plasma samples and identified a pancreatic cancer-enriched EV population. Our goal is to advance single molecule characterization of EVs for early disease detection. Abbreviations: EV: Extracellular Vesicle; qSMLM: quantitative Single Molecule Localization Microscopy; PDAC: Pancreatic Ductal Adenocarcinoma; EGFR: epidermal growth factor receptor 1; CA19-9: carbohydrate antigen 19-9; SEC: size exclusion chromatography; WGA: wheat germ agglutinin; AF647: Alexa Fluor 647; Ab: antibody; HPDEC: Healthy Pancreatic Ductal Epithelial Cell; TEM: Transmission Electron Microscopy.

17.
Acta Neuropathol ; 138(1): 49-65, 2019 07.
Article in English | MEDLINE | ID: mdl-30945056

ABSTRACT

The hexanucleotide repeat expansion GGGGCC (G4C2)n in the C9orf72 gene is the most common genetic abnormality associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent findings suggest that dysfunction of nuclear-cytoplasmic trafficking could affect the transport of RNA binding proteins in C9orf72 ALS/FTD. Here, we provide evidence that the RNA editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) is mislocalized in C9orf72 repeat expansion mediated ALS/FTD. ADAR2 is responsible for adenosine (A) to inosine (I) editing of double-stranded RNA, and its function has been shown to be essential for survival. Here we show the mislocalization of ADAR2 in human induced pluripotent stem cell-derived motor neurons (hiPSC-MNs) from C9orf72 patients, in mice expressing (G4C2)149, and in C9orf72 ALS/FTD patient postmortem tissue. As a consequence of this mislocalization we observe alterations in RNA editing in our model systems and across multiple brain regions. Analysis of editing at 408,580 known RNA editing sites indicates that there are vast RNA A to I editing aberrations in C9orf72-mediated ALS/FTD. These RNA editing aberrations are found in many cellular pathways, such as the ALS pathway and the crucial EIF2 signaling pathway. Our findings suggest that the mislocalization of ADAR2 in C9orf72 mediated ALS/FTD is responsible for the alteration of RNA processing events that may impact vast cellular functions, including the integrated stress response (ISR) and protein translation.


Subject(s)
Adenosine Deaminase/genetics , C9orf72 Protein/genetics , RNA Editing/genetics , RNA-Binding Proteins/genetics , Amyotrophic Lateral Sclerosis/genetics , Animals , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Mice, Transgenic , Pick Disease of the Brain/genetics
18.
Cell Host Microbe ; 24(5): 637-652.e8, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30449315

ABSTRACT

The gut microbiota can be altered by dietary interventions to prevent and treat various diseases. However, the mechanisms by which food products modulate commensals remain largely unknown. We demonstrate that plant-derived exosome-like nanoparticles (ELNs) are taken up by the gut microbiota and contain RNAs that alter microbiome composition and host physiology. Ginger ELNs (GELNs) are preferentially taken up by Lactobacillaceae in a GELN lipid-dependent manner and contain microRNAs that target various genes in Lactobacillus rhamnosus (LGG). Among these, GELN mdo-miR7267-3p-mediated targeting of the LGG monooxygenase ycnE yields increased indole-3-carboxaldehyde (I3A). GELN-RNAs or I3A, a ligand for aryl hydrocarbon receptor, are sufficient to induce production of IL-22, which is linked to barrier function improvement. These functions of GELN-RNAs can ameliorate mouse colitis via IL-22-dependent mechanisms. These findings reveal how plant products and their effects on the microbiome may be used to target specific host processes to alleviate disease.


Subject(s)
Exosome Multienzyme Ribonuclease Complex/pharmacology , Gastrointestinal Microbiome/drug effects , Intestines/microbiology , Intestines/physiology , MicroRNAs/pharmacology , Plants/chemistry , Animals , Bacterial Proteins , Colitis/therapy , Disease Models, Animal , Disease Susceptibility , Female , Food , Gastrointestinal Microbiome/genetics , Germ-Free Life , Host-Pathogen Interactions , Immunity, Mucosal , Indoles/metabolism , Interleukins/metabolism , Lacticaseibacillus rhamnosus/drug effects , Lacticaseibacillus rhamnosus/genetics , Male , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S/genetics , Receptors, Aryl Hydrocarbon/metabolism , Serine Endopeptidases , Tryptophan/metabolism , Interleukin-22
19.
ACS Chem Biol ; 13(10): 3000-3010, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30141626

ABSTRACT

Mutations of EXOSC3 have been linked to the rare neurological disorder known as Pontocerebellar Hypoplasia type 1B (PCH1B). EXOSC3 is one of three putative RNA-binding structural cap proteins that guide RNA into the RNA exosome, the cellular machinery that degrades RNA. Using RNAcompete, we identified a G-rich RNA motif binding to EXOSC3. Surface plasmon resonance (SPR) and microscale thermophoresis (MST) indicated an affinity in the low micromolar range of EXOSC3 for long and short G-rich RNA sequences. Although several PCH1B-causing mutations in EXOSC3 did not engage a specific RNA motif as shown by RNAcompete, they exhibited lower binding affinity to G-rich RNA as demonstrated by MST. To test the hypothesis that modification of the RNA-protein interface in EXOSC3 mutants may be phenocopied by small molecules, we performed an in-silico screen of 50 000 small molecules and used enzyme-linked immunosorbant assays (ELISAs) and MST to assess the ability of the molecules to inhibit RNA-binding by EXOSC3. We identified a small molecule, EXOSC3-RNA disrupting (ERD) compound 3 (ERD03), which ( i) bound specifically to EXOSC3 in saturation transfer difference nuclear magnetic resonance (STD-NMR), ( ii) disrupted the EXOSC3-RNA interaction in a concentration-dependent manner, and ( iii) produced a PCH1B-like phenotype with a 50% reduction in the cerebellum and an abnormally curved spine in zebrafish embryos. This compound also induced modification of zebrafish RNA expression levels similar to that observed with a morpholino against EXOSC3. To our knowledge, this is the first example of a small molecule obtained by rational design that models the abnormal developmental effects of a neurodegenerative disease in a whole organism.


Subject(s)
Disease Models, Animal , Exosome Multienzyme Ribonuclease Complex/metabolism , Isoquinolines/pharmacology , Isoquinolines/toxicity , Olivopontocerebellar Atrophies/genetics , RNA-Binding Proteins/metabolism , RNA/metabolism , Zebrafish/abnormalities , Animals , Atrophy , Cerebellum/pathology , Down-Regulation , Exosome Multienzyme Ribonuclease Complex/chemistry , Exosome Multienzyme Ribonuclease Complex/genetics , Gene Knockdown Techniques , Humans , Isoquinolines/metabolism , Molecular Docking Simulation , Mutation , Olivopontocerebellar Atrophies/chemically induced , Olivopontocerebellar Atrophies/pathology , Phenotype , Protein Binding , Protein Domains , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , Spinal Curvatures/chemically induced , Transcriptome/drug effects , Up-Regulation
20.
J Extracell Vesicles ; 6(1): 1317577, 2017.
Article in English | MEDLINE | ID: mdl-28717417

ABSTRACT

We examined the extracellular vesicle (EV) and RNA composition of pooled normal cerebrospinal fluid (CSF) samples and CSF from five major neurological disorders: Alzheimer's disease (AD), Parkinson's disease (PD), low-grade glioma (LGG), glioblastoma multiforme (GBM), and subarachnoid haemorrhage (SAH), representing neurodegenerative disease, cancer, and severe acute brain injury. We evaluated: (I) size and quantity of EVs by nanoparticle tracking analysis (NTA) and vesicle flow cytometry (VFC), (II) RNA yield and purity using four RNA isolation kits, (III) replication of RNA yields within and between laboratories, and (IV) composition of total and EV RNAs by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and RNA sequencing (RNASeq). The CSF contained ~106 EVs/µL by NTA and VFC. Brain tumour and SAH CSF contained more EVs and RNA relative to normal, AD, and PD. RT-qPCR and RNASeq identified disease-related populations of microRNAs and messenger RNAs (mRNAs) relative to normal CSF, in both total and EV fractions. This work presents relevant measures selected to inform the design of subsequent replicative CSF studies. The range of neurological diseases highlights variations in total and EV RNA content due to disease or collection site, revealing critical considerations guiding the selection of appropriate approaches and controls for CSF studies.

SELECTION OF CITATIONS
SEARCH DETAIL