Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 19396, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37938626

ABSTRACT

Amphipathic arginine-rich peptide, A2-17, exhibits moderate perturbation of lipid membranes and the highest cell penetration among its structural isomers. We investigated the direct cell-membrane penetration mechanism of the A2-17 peptide while focusing on structural flexibility. We designed conformationally constrained versions of A2-17, stapled (StpA2-17) and stitched (StchA2-17), whose α-helical conformations were stabilized by chemical crosslinking. Circular dichroism confirmed that StpA2-17 and StchA2-17 had higher α-helix content than A2-17 in aqueous solution. Upon liposome binding, only A2-17 exhibited a coil-to-helix transition. Confocal microscopy revealed that A2-17 had higher cell penetration efficiency than StpA2-17, whereas StchA2-17 remained on the cell membrane without cell penetration. Although the tryptophan fluorescence analysis suggested that A2-17 and its analogs had similar membrane-insertion positions between the interface and hydrophobic core, StchA2-17 exhibited a higher membrane affinity than A2-17 or StpA2-17. Atomic force microscopy demonstrated that A2-17 reduced the mechanical rigidity of liposomes to a greater extent than StpA2-17 and StchA2-17. Finally, electrophysiological analysis showed that A2-17 induced a higher charge influx through transient pores in a planer lipid bilayer than StpA2-17 and StchA2-17. These findings indicate that structural flexibility, which enables diverse conformations of A2-17, leads to a membrane perturbation mode that contributes to cell membrane penetration.


Subject(s)
Apolipoproteins E , Arginine , Peptides , Cell Membrane , Circular Dichroism , Liposomes , Peptides/chemistry
2.
Front Cardiovasc Med ; 10: 1223920, 2023.
Article in English | MEDLINE | ID: mdl-37547254

ABSTRACT

Introduction: Defects in lipolysis can lead to hypertriglyceridemia, which can trigger acute pancreatitis and is also associated with cardiovascular disease. Decreasing plasma triglycerides (TGs) by activating lipoprotein lipase (LPL) with ApoC2 mimetic peptides is a new treatment strategy for hypertriglyceridemia. We recently described a dual ApoC2 mimetic/ApoC3 antagonist peptide called D6PV that effectively lowered TG in several mouse models but has limitations in terms of drug development. The aim of this study was to create the next generation of ApoC2 mimetic peptides. Methods: We employed hydrocarbon staples, as well as select amino acid substitutions, to make short single helical mimetic peptides based on the last helix of ApoC2. Peptides were first tested for their ability to activate LPL and then in hypertriglyceridemia mouse models. All-atom simulations of peptides were performed in a lipid-trilayer model of TG-rich lipoproteins to discern their possible mechanism of action. Results: We designed a single stapled peptide called SP1 (21 residues), and a double stapled (stitched) peptide called SP2 (21 residues) and its N-terminal acylated analogue, SP2a. The hydrocarbon staples increased the amphipathicity of the peptides and their ability to bind lipids without interfering with LPL activation. Indeed, from all-atom simulations, the conformations of SP1 and SP2a are restrained by the staples and maintains the proper orientation of the LPL activation motif, while still allowing their deeper insertion into the lipid-trilayer model. Intraperitoneal injection of stapled peptides (1-5 umoles/kg) into ApoC2-hypomorphic mice or human ApoC3-transgenic resulted in an 80%-90% reduction in plasma TG within 3 h, similar to the much longer D6PV peptide (41 residues). Other modifications (replacement L-Glu20, L-Glu21 with their D-isomers, N-methylation of Gly19, Met2NorLeu and Ala1alpha-methylAla substitutions, N-terminal octanoylation) were introduced into the SP2a peptide. These changes made SP2a highly resistant to proteolysis against trypsin, pepsin, and Proteinase K, while maintaining similar efficacy in lowering plasma TG in mice. Conclusion: We describe a new generation of ApoC2 mimetic peptides based on hydron carbon stapling that are at least equally potent to earlier peptides but are much shorter and resistant to proteolysis and could be further developed into a new therapy for hypertriglyceridemia.

3.
JCI Insight ; 7(10)2022 05 23.
Article in English | MEDLINE | ID: mdl-35389891

ABSTRACT

BackgroundAlthough traditional lipid parameters and coronary imaging techniques are valuable for cardiovascular disease (CVD) risk prediction, better diagnostic tests are still needed.MethodsIn a prospective, observational study, 795 individuals had extensive cardiometabolic profiling, including emerging biomarkers, such as apolipoprotein E-containing HDL-cholesterol (ApoE-HDL-C). Coronary artery calcium (CAC) score was assessed in the entire cohort, and quantitative coronary computed tomography angiography (CCTA) characterization of total burden, noncalcified burden (NCB), and fibrous plaque burden (FB) was performed in a subcohort (n = 300) of patients stratified by concentration of ApoE-HDL-C. Total and HDL-containing apolipoprotein C-III (ApoC-III) were also measured.ResultsMost patients had a clinical diagnosis of coronary artery disease (CAD) (n = 80.4% of 795), with mean age of 59 years, a majority being male (57%), and about half on statin treatment. The low ApoE-HDL-C group had more severe stenosis (11% vs. 2%, overall P < 0.001), with higher CAC as compared with high ApoE-HDL-C. On quantitative CCTA, the high ApoE-HDL-C group had lower NCB (ß = -0.24, P = 0.0001), which tended to be significant in a fully adjusted model (ß = -0.32, P = 0.001) and altered by ApoC-III in HDL levels. Low ApoE-HDL-C was significantly associated with LDL particle number (ß = 0.31; P = 0.0001). Finally, when stratified by FB, ApoC-III in HDL showed a more robust predictive value of CAD over ApoE-HDL-C (AUC: 0.705, P = 0.0001) in a fully adjusted model.ConclusionApoE-containing HDL-C showed a significant association with early coronary plaque characteristics and is affected by the presence of ApoC-III, indicating that low ApoE-HDL-C and high ApoC-III may be important markers of CVD severity.Trial RegistrationClinicalTrials.gov: NCT01621594.FundingThis work was supported by the NHLBI at the NIH Intramural Research Program.


Subject(s)
Cardiovascular Diseases , Coronary Artery Disease , Plaque, Atherosclerotic , Apolipoprotein C-III , Apolipoproteins E , Cholesterol , Female , Humans , Lipoproteins, HDL , Male , Middle Aged , Plaque, Atherosclerotic/diagnostic imaging , Prospective Studies
4.
Cells ; 10(3)2021 03 08.
Article in English | MEDLINE | ID: mdl-33800446

ABSTRACT

Since the seminal breakthrough of treating diabetic patients with insulin in the 1920s, there has been great interest in developing other proteins and their peptide mimetics as therapies for a wide variety of other medical disorders. Currently, there are at least 60 different peptides that have been approved for human use and over 150 peptides that are in various stages of clinical development. Peptides mimetic of the major proteins on lipoproteins, namely apolipoproteins, have also been developed first as tools for understanding apolipoprotein structure and more recently as potential therapeutics. In this review, we discuss the biochemistry, peptide mimetics design and clinical trials for peptides based on apoA-I, apoE and apoC-II. We primarily focus on applications of peptide mimetics related to cardiovascular diseases. We conclude with a discussion on the limitations of peptides as therapeutic agents and the challenges that need to be overcome before apolipoprotein mimetic peptides can be developed into new drugs.


Subject(s)
Apolipoprotein A-I/therapeutic use , Apolipoproteins/metabolism , Cardiovascular Diseases/therapy , Peptides/metabolism , Humans
5.
Curr Opin Lipidol ; 31(3): 147-153, 2020 06.
Article in English | MEDLINE | ID: mdl-32332429

ABSTRACT

PURPOSE OF REVIEW: Apolipoprotein C-II (apoC-II) is a critical cofactor for the activation of lipoprotein lipase (LPL), a plasma enzyme that hydrolyzes triglycerides (TG) on TG-rich lipoproteins (TRL). Although apoC-II was first discovered nearly 50 years ago, there is renewed interest in it because of the recent efforts to develop new drugs for the treatment of hypertriglyceridemia (HTG). The main topic of this review will be the development of apoC-II mimetic peptides as a possible new therapy for cardiovascular disease. RECENT FINDINGS: We first describe the biochemistry of apoC-II and its role in TRL metabolism. We then review the clinical findings of HTG, particularly those related to apoC-II deficiency, and how TG metabolism relates to the development of atherosclerosis. We next summarize the current efforts to develop new drugs for HTG. Finally, we describe recent efforts to make small synthetic apoC-II mimetic peptides for activation of LPL and how these peptides unexpectedly have other mechanisms of action mostly related to the antagonism of the TG-raising effects of apoC-III. SUMMARY: The role of apoC-II in TG metabolism is reviewed, as well as recent efforts to develop apoC-II mimetic peptides into a novel therapy for HTG.


Subject(s)
Apolipoprotein C-II/genetics , Atherosclerosis/drug therapy , Hypertriglyceridemia/drug therapy , Lipoprotein Lipase/genetics , Apolipoprotein C-III/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Humans , Hypertriglyceridemia/genetics , Hypertriglyceridemia/pathology , Lipoproteins , Lipoproteins, HDL/genetics , Peptides/therapeutic use , Triglycerides/genetics , Triglycerides/metabolism
6.
Article in English | MEDLINE | ID: mdl-31676442

ABSTRACT

Pancreatic lipase (PNLIP) is a digestive enzyme that is a potential drug target for the treatment of obesity. A better understanding of its regulation mechanisms would facilitate the development of new therapeutics. Recent studies indicate that intestinal lipolysis by PNLIP is reduced by Angiopoietin-like protein 4 (ANGPTL4), whose N-terminal domain (nANGPTL4) is a known inactivator of lipoprotein lipase (LPL) in blood circulation and adipocytes. To elucidate the mechanism of PNLIP inhibition by ANGPTL4, we developed a novel approach, using isothermal titration calorimetry (ITC). The obtained results were compared with those of well-described inhibitors of PNLIP - ε-polylysine (EPL), (-)-epigallocatechin-3-gallate (EGCG) and tetrahydrolipstatin. We demonstrate that ITC allows to investigate PNLIP inhibition mechanisms in complex substrate emulsions and that the ITC-based assay is highly sensitive - the lowest concentration for quantification of PNLIP is 1.5 pM. Combining ITC with surface plasmon resonance and fluorescence measurements, we present evidence that ANGPTL4 is a lipid-binding protein that influences PNLIP activity through interactions with components of substrate emulsions (bile salts, phospholipids and triglycerides), and this promotes the aggregation of triglyceride emulsions similarly to the PNLIP inhibitors EPL and EGCG. In the absence of substrate emulsion, unlike in the case of LPL, ANGPTL4 did not induce the inactivation of PNLIP. Our data also prove that due to various interactions with components of substrate systems, the effect of a PNLIP inhibitor depends on whether its effect is measured in a complex substrate emulsion or in a simple substrate system.


Subject(s)
Angiopoietin-Like Protein 4/pharmacology , Anti-Obesity Agents/pharmacology , Calorimetry , Enzyme Assays/methods , Lipase/antagonists & inhibitors , Angiopoietin-Like Protein 4/therapeutic use , Anti-Obesity Agents/therapeutic use , Catechin/analogs & derivatives , Catechin/pharmacology , Drug Evaluation, Preclinical/methods , Humans , Lipase/genetics , Lipase/metabolism , Obesity/drug therapy , Obesity/metabolism , Orlistat/pharmacology , Polylysine/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Biochem Biophys Res Commun ; 519(1): 67-72, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31477272

ABSTRACT

Elevated plasma triglyceride (TG) levels are associated with higher risk of atherosclerotic cardiovascular disease. One way to reduce plasma TG is to increase the activity of lipoprotein lipase (LPL), the rate limiting enzyme in plasma TG metabolism. An apolipoprotein (apo) C-II mimetic peptide (18A-CII-a) has been recently developed that stimulated LPL activity in vitro and decreased plasma TG concentration in animal models for hypertriglyceridemia. Since this peptide can serve as a new therapeutic approach for treatment of hypertriglyceridemia, we investigated how 18A-CII-a peptide influences LPL activity in human plasma. We used recently described isothermal titration calorimetry based approach to assess the peptide, which enables the analysis in nearly undiluted human plasma. The 18A-CII-a peptide was 3.5-fold more efficient in stimulating LPL activity than full-length apoC-II in plasma sample from normolipidemic individual. Furthermore, 18A-CII-a also increased LPL activity in hypertriglyceridemic plasma samples. Unlike apoC-II, high concentrations of the 18A-CII-a peptide did not inhibit LPL activity. The increase in LPL activity after addition of 18A-CII-a or apoC-II to plasma was due to the increase of the amount of available substrate for LPL. Measurements with isolated lipoproteins revealed that the relative activation effects of 18A-CII-a and apoC-II on LPL activity were greater in smaller size lipoprotein fractions, such as remnant lipoproteins, low-density lipoproteins and high-density lipoproteins. In summary, this report describes a novel mechanism of action for stimulation of LPL activity by apoC-II mimetic peptides.


Subject(s)
Apolipoprotein C-II/metabolism , Calorimetry/methods , Lipoprotein Lipase/blood , Peptides/metabolism , Animals , Cattle , Fatty Acids/metabolism , Humans , Hydrolysis , Substrate Specificity
8.
Chem Sci ; 8(3): 2184-2190, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28694954

ABSTRACT

A novel eight-membered macrocycle of the hemicucurbit[n]uril family, chiral (all-R)-cyclohexanohemicucurbit[8]uril (cycHC[8]) ‡The name cyclohexylhemicucurbituril, previously used for these macrocycles, is changed in accordance with the IUPAC nomenclature for fused cycles, as the cyclohexane substituents are fused with the parent hemicucurbituril. binds anions in a purely protic solvent with remarkable selectivity. The cycHC[8] portals open and close to fully encapsulate anions in a 1 : 1 ratio, resembling a molecular Pac-Man™. Comprehensive gas, solution and solid phase studies prove that the binding is governed by the size, shape and charge distribution of the bound anion. Gas phase studies show an order of SbF6- ≈ PF6- > ReO4- > ClO4- > SCN- > BF4- > HSO4- > CF3SO3- for anion complexation strength. An extensive crystallographic study reveals the preferred orientations of the anions within the octahedral cavity of cycHC[8] and highlights the importance of the size- and shape-matching between the anion and the receptor cavity. The solution studies show the strongest binding of the ideally fitting SbF6- anion, with an association constant of 2.5 × 105 M-1 in pure methanol. The symmetric, receptor cavity-matching charge distribution of the anions results in drastically stronger binding than in the case of anions with asymmetric charge distribution. Isothermal titration calorimetry (ITC) reveals the complexation to be exothermic and enthalpy-driven. The DFT calculations and VT-NMR studies confirmed that the complexation proceeds through a pre-complex formation while the exchange of methanol solvent with the anion is the rate-limiting step. The octameric cycHC[8] offers a unique example of template-controlled design of an electroneutral host for binding large anions in a competitive polar solvent.

9.
J Lipid Res ; 58(1): 279-288, 2017 01.
Article in English | MEDLINE | ID: mdl-27845686

ABSTRACT

LPL hydrolyzes triglycerides in plasma lipoproteins. Due to the complex regulation mechanism, it has been difficult to mimic the physiological conditions under which LPL acts in vitro. We demonstrate that isothermal titration calorimetry (ITC), using human plasma as substrate, overcomes several limitations of previously used techniques. The high sensitivity of ITC allows continuous recording of the heat released during hydrolysis. Both initial rates and kinetics for complete hydrolysis of plasma lipids can be studied. The heat rate was shown to correspond to the release of fatty acids and was linearly related to the amount of added enzyme, either purified LPL or postheparin plasma. Addition of apoC-III reduced the initial rate of hydrolysis by LPL, but the inhibition became less prominent with time when the lipoproteins were triglyceride poor. Addition of angiopoietin-like protein (ANGPTL)3 or ANGPTL4 caused reduction of the activity of LPL via a two-step mechanism. We conclude that ITC can be used for quantitative measurements of LPL activity and interactions under in vivo-like conditions, for comparisons of the properties of plasma samples from patients and control subjects as substrates for LPL, as well as for testing of drug candidates developed with the aim to affect the LPL system.


Subject(s)
Calorimetry , Fatty Acids/blood , Lipolysis/drug effects , Lipoprotein Lipase/blood , Adult , Angiopoietin-Like Protein 3 , Angiopoietin-Like Protein 4 , Angiopoietin-like Proteins , Angiopoietins/administration & dosage , Animals , Apolipoprotein C-III/administration & dosage , Cattle , Female , Healthy Volunteers , Humans , Hydrolysis , Kinetics , Lipoproteins, VLDL/blood , Male , Triglycerides/blood
10.
J Biol Chem ; 290(22): 13919-34, 2015 May 29.
Article in English | MEDLINE | ID: mdl-25873395

ABSTRACT

GPIHBP1 is an endothelial membrane protein that transports lipoprotein lipase (LPL) from the subendothelial space to the luminal side of the capillary endothelium. Here, we provide evidence that two regions of GPIHBP1, the acidic N-terminal domain and the central Ly6 domain, interact with LPL as two distinct binding sites. This conclusion is based on comparative binding studies performed with a peptide corresponding to the N-terminal domain of GPIHBP1, the Ly6 domain of GPIHBP1, wild type GPIHBP1, and the Ly6 domain mutant GPIHBP1 Q114P. Although LPL and the N-terminal domain formed a tight but short lived complex, characterized by fast on- and off-rates, the complex between LPL and the Ly6 domain formed more slowly and persisted for a longer time. Unlike the interaction of LPL with the Ly6 domain, the interaction of LPL with the N-terminal domain was significantly weakened by salt. The Q114P mutant bound LPL similarly to the N-terminal domain of GPIHBP1. Heparin dissociated LPL from the N-terminal domain, and partially from wild type GPIHBP1, but was unable to elute the enzyme from the Ly6 domain. When LPL was in complex with the acidic peptide corresponding to the N-terminal domain of GPIHBP1, the enzyme retained its affinity for the Ly6 domain. Furthermore, LPL that was bound to the N-terminal domain interacted with lipoproteins, whereas LPL bound to the Ly6 domain did not. In summary, our data suggest that the two domains of GPIHBP1 interact independently with LPL and that the functionality of LPL depends on its localization on GPIHBP1.


Subject(s)
Glycosylphosphatidylinositols/chemistry , Lipoprotein Lipase/chemistry , Lipoproteins/chemistry , Receptors, Lipoprotein/chemistry , Animals , Anisotropy , Binding Sites , Cattle , Cross-Linking Reagents/chemistry , Endothelium, Vascular/metabolism , Epitopes/chemistry , Fluorescent Dyes/chemistry , Heparin/chemistry , Humans , Hydrogen-Ion Concentration , Mass Spectrometry , Mice , Mutation , Peptides/chemistry , Protein Binding , Protein Interaction Mapping , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , Surface Plasmon Resonance
SELECTION OF CITATIONS
SEARCH DETAIL
...