Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3827, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714735

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.


Subject(s)
Catalytic Domain , Coronavirus 3C Proteases , Cysteine , Disulfides , Oxidation-Reduction , SARS-CoV-2 , Disulfides/chemistry , Disulfides/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/chemistry , Coronavirus 3C Proteases/metabolism , Coronavirus 3C Proteases/chemistry , Cysteine/chemistry , Cysteine/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Protein Multimerization , COVID-19/virology
2.
J Med Chem ; 67(9): 7048-7067, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38630165

ABSTRACT

Emerging RNA viruses, including SARS-CoV-2, continue to be a major threat. Cell entry of SARS-CoV-2 particles via the endosomal pathway involves cysteine cathepsins. Due to ubiquitous expression, cathepsin L (CatL) is considered a promising drug target in the context of different viral and lysosome-related diseases. We characterized the anti-SARS-CoV-2 activity of a set of carbonyl- and succinyl epoxide-based inhibitors, which were previously identified as inhibitors of cathepsins or related cysteine proteases. Calpain inhibitor XII, MG-101, and CatL inhibitor IV possess antiviral activity in the very low nanomolar EC50 range in Vero E6 cells and inhibit CatL in the picomolar Ki range. We show a relevant off-target effect of CatL inhibition by the coronavirus main protease α-ketoamide inhibitor 13b. Crystal structures of CatL in complex with 14 compounds at resolutions better than 2 Å present a solid basis for structure-guided understanding and optimization of CatL inhibitors toward protease drug development.


Subject(s)
Antiviral Agents , Cathepsin L , SARS-CoV-2 , Cathepsin L/antagonists & inhibitors , Cathepsin L/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Animals , Chlorocebus aethiops , Vero Cells , SARS-CoV-2/drug effects , Humans , Structure-Activity Relationship , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Crystallography, X-Ray , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/chemical synthesis , Protease Inhibitors/metabolism , Models, Molecular
3.
Science ; 382(6674): 1015-1020, 2023 12.
Article in English | MEDLINE | ID: mdl-38033070

ABSTRACT

Photolyase is an enzyme that uses light to catalyze DNA repair. To capture the reaction intermediates involved in the enzyme's catalytic cycle, we conducted a time-resolved crystallography experiment. We found that photolyase traps the excited state of the active cofactor, flavin adenine dinucleotide (FAD), in a highly bent geometry. This excited state performs electron transfer to damaged DNA, inducing repair. We show that the repair reaction, which involves the lysis of two covalent bonds, occurs through a single-bond intermediate. The transformation of the substrate into product crowds the active site and disrupts hydrogen bonds with the enzyme, resulting in stepwise product release, with the 3' thymine ejected first, followed by the 5' base.


Subject(s)
Deoxyribodipyrimidine Photo-Lyase , Crystallography , Deoxyribodipyrimidine Photo-Lyase/chemistry , Deoxyribodipyrimidine Photo-Lyase/metabolism , DNA Repair , DNA Damage , Electron Transport
4.
Commun Biol ; 6(1): 1058, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853179

ABSTRACT

Several drug screening campaigns identified Calpeptin as a drug candidate against SARS-CoV-2. Initially reported to target the viral main protease (Mpro), its moderate activity in Mpro inhibition assays hints at a second target. Indeed, we show that Calpeptin is an extremely potent cysteine cathepsin inhibitor, a finding additionally supported by X-ray crystallography. Cell infection assays proved Calpeptin's efficacy against SARS-CoV-2. Treatment of SARS-CoV-2-infected Golden Syrian hamsters with sulfonated Calpeptin at a dose of 1 mg/kg body weight reduces the viral load in the trachea. Despite a higher risk of side effects, an intrinsic advantage in targeting host proteins is their mutational stability in contrast to highly mutable viral targets. Here we show that the inhibition of cathepsins, a protein family of the host organism, by calpeptin is a promising approach for the treatment of SARS-CoV-2 and potentially other viral infections.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Cathepsins , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Protease Inhibitors/pharmacology , Cysteine Endopeptidases/metabolism
5.
Commun Biol, v.6, 1058, out. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5135

ABSTRACT

Several drug screening campaigns identified Calpeptin as a drug candidate against SARS-CoV-2. Initially reported to target the viral main protease (Mpro), its moderate activity in Mpro inhibition assays hints at a second target. Indeed, we show that Calpeptin is an extremely potent cysteine cathepsin inhibitor, a finding additionally supported by X-ray crystallography. Cell infection assays proved Calpeptin’s efficacy against SARS-CoV-2. Treatment of SARS-CoV-2-infected Golden Syrian hamsters with sulfonated Calpeptin at a dose of 1 mg/kg body weight reduces the viral load in the trachea. Despite a higher risk of side effects, an intrinsic advantage in targeting host proteins is their mutational stability in contrast to highly mutable viral targets. Here we show that the inhibition of cathepsins, a protein family of the host organism, by calpeptin is a promising approach for the treatment of SARS-CoV-2 and potentially other viral infections.

6.
Commun Biol ; 5(1): 805, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35953531

ABSTRACT

SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host's innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library. The compounds identified by X-ray screening and complexed to PLpro demonstrate clear inhibition of PLpro in a deISGylation activity assay. Two compounds exhibit distinct antiviral activity in Vero cell line assays and one inhibited a cytopathic effect in non-cytotoxic concentration ranges. In the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Allosteric Site , Antiviral Agents/pharmacology , Coronavirus Papain-Like Proteases , Humans , Papain/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2
7.
Front Chem ; 10: 832431, 2022.
Article in English | MEDLINE | ID: mdl-35480391

ABSTRACT

The papain-like protease (PLpro) of SARS-CoV-2 is essential for viral propagation and, additionally, dysregulation of the host innate immune system. Using a library of 40 potential metal-chelating compounds we performed an X-ray crystallographic screening against PLpro. As outcome we identified six compounds binding to the target protein. Here we describe the interaction of one hydrazone (H1) and five thiosemicarbazone (T1-T5) compounds with the two distinct natural substrate binding sites of PLpro for ubiquitin and ISG15. H1 binds to a polar groove at the S1 binding site by forming several hydrogen bonds with PLpro. T1-T5 bind into a deep pocket close to the polyubiquitin and ISG15 binding site S2. Their interactions are mainly mediated by multiple hydrogen bonds and further hydrophobic interactions. In particular compound H1 interferes with natural substrate binding by sterical hindrance and induces conformational changes in protein residues involved in substrate binding, while compounds T1-T5 could have a more indirect effect. Fluorescence based enzyme activity assay and complementary thermal stability analysis reveal only weak inhibition properties in the high micromolar range thereby indicating the need for compound optimization. Nevertheless, the unique binding properties involving strong hydrogen bonding and the various options for structural optimization make the compounds ideal lead structures. In combination with the inexpensive and undemanding synthesis, the reported hydrazone and thiosemicarbazones represent an attractive scaffold for further structure-based development of novel PLpro inhibitors by interrupting protein-protein interactions at the S1 and S2 site.

8.
Int J Mol Sci ; 22(12)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200865

ABSTRACT

A novel cytoplasmic dye-decolorizing peroxidase from Dictyostelium discoideum was investigated that oxidizes anthraquinone dyes, lignin model compounds, and general peroxidase substrates such as ABTS efficiently. Unlike related enzymes, an aspartate residue replaces the first glycine of the conserved GXXDG motif in Dictyostelium DyPA. In solution, Dictyostelium DyPA exists as a stable dimer with the side chain of Asp146 contributing to the stabilization of the dimer interface by extending the hydrogen bond network connecting two monomers. To gain mechanistic insights, we solved the Dictyostelium DyPA structures in the absence of substrate as well as in the presence of potassium cyanide and veratryl alcohol to 1.7, 1.85, and 1.6 Å resolution, respectively. The active site of Dictyostelium DyPA has a hexa-coordinated heme iron with a histidine residue at the proximal axial position and either an activated oxygen or CN- molecule at the distal axial position. Asp149 is in an optimal conformation to accept a proton from H2O2 during the formation of compound I. Two potential distal solvent channels and a conserved shallow pocket leading to the heme molecule were found in Dictyostelium DyPA. Further, we identified two substrate-binding pockets per monomer in Dictyostelium DyPA at the dimer interface. Long-range electron transfer pathways associated with a hydrogen-bonding network that connects the substrate-binding sites with the heme moiety are described.


Subject(s)
Coloring Agents/chemistry , Dictyostelium/enzymology , Heme/chemistry , Hydrogen Peroxide/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Catalysis , Catalytic Domain , Crystallography, X-Ray , Heme/metabolism , Hydrogen Bonding , Oxidation-Reduction
9.
Science ; 372(6542): 642-646, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33811162

ABSTRACT

The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput x-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied x-ray fragment screening experiments with molecules of low complexity, our screen tested already-approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro In subsequent cell-based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2.


Subject(s)
Allosteric Site , Antiviral Agents/chemistry , Catalytic Domain , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Drug Development , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , Crystallography, X-Ray , Drug Evaluation, Preclinical , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Vero Cells , Virus Replication/drug effects
10.
J Biol Chem ; 296: 100128, 2021.
Article in English | MEDLINE | ID: mdl-33257319

ABSTRACT

Myosin-1C is a single-headed, short-tailed member of the myosin class I subfamily that supports a variety of actin-based functions in the cytosol and nucleus. In vertebrates, alternative splicing of the MYO1C gene leads to the production of three isoforms, myosin-1C0, myosin-1C16, and myosin-1C35, that carry N-terminal extensions of different lengths. However, it is not clear how these extensions affect the chemomechanical coupling of human myosin-1C isoforms. Here, we report on the motor activity of the different myosin-1C isoforms measuring the unloaded velocities of constructs lacking the C-terminal lipid-binding domain on nitrocellulose-coated glass surfaces and full-length constructs on reconstituted, supported lipid bilayers. The higher yields of purified proteins obtained with constructs lacking the lipid-binding domain allowed a detailed characterization of the individual kinetic steps of human myosin-1C isoforms in their productive interaction with nucleotides and filamentous actin. Isoform-specific differences include 18-fold changes in the maximum power output per myosin-1C motor and 4-fold changes in the velocity and the resistive force at which maximum power output occurs. Our results support a model in which the isoform-specific N-terminal extensions affect chemomechanical coupling by combined steric and allosteric effects, thereby reducing both the length of the working stroke and the rate of ADP release in the absence of external loads by a factor of 2 for myosin-1C35. As the large change in maximum power output shows, the functional differences between the isoforms are further amplified by the presence of external loads.


Subject(s)
Actins/metabolism , Myosin Type I/chemistry , Myosin Type I/metabolism , Nucleotides/metabolism , Biomechanical Phenomena , Humans , Kinetics , Protein Binding , Protein Isoforms
11.
12.
Nat Commun ; 9(1): 4250, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30315159

ABSTRACT

Germline mutations in the ubiquitously expressed ACTB, which encodes ß-cytoplasmic actin (CYA), are almost exclusively associated with Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF). Here, we report six patients with previously undescribed heterozygous variants clustered in the 3'-coding region of ACTB. Patients present with clinical features distinct from BWCFF, including mild developmental disability, microcephaly, and thrombocytopenia with platelet anisotropy. Using patient-derived fibroblasts, we demonstrate cohort specific changes to ß-CYA filament populations, which include the enhanced recruitment of thrombocytopenia-associated actin binding proteins (ABPs). These perturbed interactions are supported by in silico modeling and are validated in disease-relevant thrombocytes. Co-examination of actin and microtubule cytoskeleton constituents in patient-derived megakaryocytes and thrombocytes indicates that these ß-CYA mutations inhibit the final stages of platelet maturation by compromising microtubule organization. Our results define an ACTB-associated clinical syndrome with a distinct genotype-phenotype correlation and delineate molecular mechanisms underlying thrombocytopenia in this patient cohort.


Subject(s)
Actins/genetics , Exons/genetics , Thrombocytopenia/genetics , Actins/metabolism , Blood Platelets/metabolism , Cells, Cultured , Cytoskeleton/metabolism , Female , Genotype , Germ-Line Mutation/genetics , Humans , Male , Megakaryocytes/metabolism , Mutation/genetics , Phenotype , Thrombocytopenia/metabolism
13.
J Biol Chem ; 292(43): 17804-17818, 2017 10 27.
Article in English | MEDLINE | ID: mdl-28893906

ABSTRACT

The MYO1C gene produces three alternatively spliced isoforms, differing only in their N-terminal regions (NTRs). These isoforms, which exhibit both specific and overlapping nuclear and cytoplasmic functions, have different expression levels and nuclear-cytoplasmic partitioning. To investigate the effect of NTR extensions on the enzymatic behavior of individual isoforms, we overexpressed and purified the three full-length human isoforms from suspension-adapted HEK cells. MYO1CC favored the actomyosin closed state (AMC), MYO1C16 populated the actomyosin open state (AMO) and AMC equally, and MYO1C35 favored the AMO state. Moreover, the full-length constructs isomerized before ADP release, which has not been observed previously in truncated MYO1CC constructs. Furthermore, global numerical simulation analysis predicted that MYO1C35 populated the actomyosin·ADP closed state (AMDC) 5-fold more than the actomyosin·ADP open state (AMDO) and to a greater degree than MYO1CC and MYO1C16 (4- and 2-fold, respectively). On the basis of a homology model of the 35-amino acid NTR of MYO1C35 (NTR35) docked to the X-ray structure of MYO1CC, we predicted that MYO1C35 NTR residue Arg-21 would engage in a specific interaction with post-relay helix residue Glu-469, which affects the mechanics of the myosin power stroke. In addition, we found that adding the NTR35 peptide to MYO1CC yielded a protein that transiently mimics MYO1C35 kinetic behavior. By contrast, NTR35, which harbors the R21G mutation, was unable to confer MYO1C35-like kinetic behavior. Thus, the NTRs affect the specific nucleotide-binding properties of MYO1C isoforms, adding to their kinetic diversity. We propose that this level of fine-tuning within MYO1C broadens its adaptability within cells.


Subject(s)
Alternative Splicing , Myosin Type I , Actomyosin/chemistry , Actomyosin/genetics , Actomyosin/metabolism , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/genetics , Adenosine Diphosphate/metabolism , Amino Acid Substitution , Crystallography, X-Ray , HEK293 Cells , Humans , Isoenzymes , Mutation, Missense , Myosin Type I/chemistry , Myosin Type I/genetics , Myosin Type I/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...