ABSTRACT
The development of smart and eco-friendly fertilizers is pivotal to guarantee food security sustainably. Phosphate rock and struvite are promising alternatives for P fertilization; nevertheless, the solubility of these sources is a challenge for consistent use efficiency. Here, we propose using a polysulfide obtained via inverse vulcanization as a novel controlled-release fertilizer matrix in a system containing either Bayóvar rock (Bay) or struvite (Str). The polysulfide provides S for plants after being biologically oxidized to sulfate in soil, generating local acidity for P solubilization. After 15 days of soil incubation, the composites with 75 wt % Str and 75 wt % Bay achieved, respectively, 3 and 2 times the S oxidation from the elemental sulfur reference. Results indicated that P content stimulates the soil microorganisms' activity for S oxidation. The matrix had a physical role in improving Bay dissolution and regulating the rapid release from Str. Moreover, the available P in soil was 25-30 mg/dm3 for Bay composites, while for pure Bay, it was 9 mg/dm3.
Subject(s)
Fertilizers , Phosphates , Delayed-Action Preparations , Fertilization , Fertilizers/analysis , Soil , Sulfides , SulfurABSTRACT
BACKGROUND: Selenium (Se) is an essential element for humans and animals. Rice is one of the most commonly consumed cereals in the world, so the agronomic biofortification of cereals with Se may be a good strategy to increase the levels of daily intake of Se by the population. This study evaluated the agronomic biofortification of rice genotypes with Se and its effects on grain nutritional quality. Five rates of Se (0, 10, 25, 50, and 100 g ha -1 ) were applied as selenate via the soil to three rice genotypes under field conditions. RESULTS: Selenium concentrations in the leaves and polished grains increased linearly in response to Se application rates. A highly significant correlation was observed between the Se rates and the Se concentration in the leaves and grains, indicating high translocation of Se. The application of Se also increased the concentration of albumin, globulin, prolamin, and glutelin in polished grains. CONCLUSION: Biofortifying rice genotypes using 25 g Se ha -1 could increase the average daily Se intake from 4.64 to 66 µg day-1 . Considering that the recommended daily intake of Se by adults is 55 µg day-1 , this agronomic strategy could contribute to alleviating widespread Se malnutrition. © 2019 Society of Chemical Industry.