Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(26): 9893-9914, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38966358

ABSTRACT

Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.

2.
Adv Mater ; : e2404110, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943473

ABSTRACT

Photoelectrochemical (PEC) devices offer a promising platform towards direct solar light harvesting and chemical storage. However, most prototypes employ wide bandgap semiconductors, moisture-sensitive inorganic light absorbers, or corrosive electrolytes. Here, we introduce the design and assembly of PEC devices based on an organic donor-acceptor bulk heterojunction (BHJ), which demonstrate long-term H2 evolution and CO2 reduction in benign aqueous media using a carbon-based encapsulant. Accordingly, PCE10:EH-IDTBR photocathodes display long-term H2 production for 300 h in a near-neutral pH solution, whereas photocathodes with a molecular CO2 reduction catalyst attain a CO:H2 selectivity of 5.41±0.53 under 0.1 sun irradiation. Their early onset potentials enable the construction of PCE10:EH-IDTBR - BiVO4 artificial leaves, which couple unassisted syngas production with O2 evolution in a reactor completely powered by sunlight, sustaining a 1:1 ratio of CO to H2 over 96 h of operation. This article is protected by copyright. All rights reserved.

3.
J Am Chem Soc ; 146(22): 15648-15658, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38767460

ABSTRACT

The sunlight-driven reduction of CO2 into fuels and platform chemicals is a promising approach to enable a circular economy. However, established optimization approaches are poorly suited to multivariable multimetric photocatalytic systems because they aim to optimize one performance metric while sacrificing the others and thereby limit overall system performance. Herein, we address this multimetric challenge by defining a metric for holistic system performance that takes multiple figures of merit into account, and employ a machine learning algorithm to efficiently guide our experiments through the large parameter matrix to make holistic optimization accessible for human experimentalists. As a test platform, we employ a five-component system that self-assembles into photocatalytic micelles for CO2-to-CO reduction, which we experimentally optimized to simultaneously improve yield, quantum yield, turnover number, and frequency while maintaining high selectivity. Leveraging the data set with machine learning algorithms allows quantification of each parameter's effect on overall system performance. The buffer concentration is unexpectedly revealed as the dominating parameter for optimal photocatalytic activity, and is nearly four times more important than the catalyst concentration. The expanded use and standardization of this methodology to define and optimize holistic performance will accelerate progress in different areas of catalysis by providing unprecedented insights into performance bottlenecks, enhancing comparability, and taking results beyond comparison of subjective figures of merit.

5.
Nature ; 628(8009): 765-770, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658685

ABSTRACT

Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3-5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm-2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.

6.
Chem Sci ; 15(16): 6088-6094, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665532

ABSTRACT

The assembly of semiconductors as light absorbers and enzymes as redox catalysts offers a promising approach for sustainable chemical synthesis driven by light. However, achieving the rational design of such semi-artificial systems requires a comprehensive understanding of the abiotic-biotic interface, which poses significant challenges. In this study, we demonstrate an electrostatic interaction strategy to interface negatively charged cyanamide modified graphitic carbon nitride (NCNCNX) with an [FeFe]-hydrogenase possessing a positive surface charge around the distal FeS cluster responsible for electron uptake into the enzyme. The strong electrostatic attraction enables efficient solar hydrogen (H2) production via direct interfacial electron transfer (DET), achieving a turnover frequency (TOF) of 18 669 h-1 (4 h) and a turnover number (TON) of 198 125 (24 h). Interfacial characterizations, including quartz crystal microbalance (QCM), photoelectrochemical impedance spectroscopy (PEIS), intensity-modulated photovoltage spectroscopy (IMVS), and transient photocurrent spectroscopy (TPC) have been conducted on the semi-artificial carbon nitride-enzyme system to provide a comprehensive understanding for the future development of photocatalytic hybrid assemblies.

7.
Small ; : e2400057, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519846

ABSTRACT

A simple and precious-metal free photosystem for the reduction of aqueous CO2 to syngas (CO and H2) is reported consisting of carbon dots (CDs) as the sole light harvester together with a molecular cobalt bis(terpyridine) CO2 reduction co-catalyst. This homogeneous photocatalytic system operates in the presence of a sacrificial electron donor (triethanolamine) in DMSO/H2O solution at ambient temperature. The photocatalytic system exhibits an activity of 7.7 ± 0.2 mmolsyngas gCDs -1 (3.6 ± 0.2 mmolCO gCDs -1 and 4.1 ± 0.1 mmolH2 gCDs -1) after 24 hours of full solar spectrum irradiation (AM 1.5G). Spectroscopic and electrochemical characterization supports that this photocatalytic performance is attributed to a favorable association between CDs and the molecular cobalt catalyst, which results in improved interfacial photoelectron transfer and catalytic mechanism. This work provides a scalable and inexpensive platform for the development of CO2 photoreduction systems using CDs.

8.
Nat Chem ; 16(6): 1015-1023, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38355827

ABSTRACT

The development of surface-immobilized molecular redox catalysts is an emerging research field with promising applications in sustainable chemistry. In electrocatalysis, paramagnetic species are often key intermediates in the mechanistic cycle but are inherently difficult to detect and follow by conventional in situ techniques. We report a new method, operando film-electrochemical electron paramagnetic resonance spectroscopy (FE-EPR), which enables mechanistic studies of surface-immobilized electrocatalysts. This technique enables radicals formed during redox reactions to be followed in real time under flow conditions, at room temperature and in aqueous solution. Detailed insight into surface-immobilized catalysts, as exemplified here through alcohol oxidation catalysis by a surface-immobilized nitroxide, is possible by detecting active-site paramagnetic species sensitively and quantitatively operando, thereby enabling resolution of the reaction kinetics. Our finding that the surface electron-transfer rate, which is of the same order of magnitude as the rate of catalysis (accessible from operando FE-EPR), limits catalytic efficiency has implications for the future design of better surface-immobilized catalysts.

9.
Nat Rev Chem ; 8(2): 87-105, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38291132

ABSTRACT

The adverse environmental impacts of greenhouse gas emissions and persistent waste accumulation are driving the demand for sustainable approaches to clean-energy production and waste recycling. By coupling the thermodynamically favourable oxidation of waste-derived organic carbon streams with fuel-forming reduction reactions suitable for producing clean hydrogen or converting CO2 to fuels, solar reforming simultaneously valorizes waste and generates useful chemical products. With appropriate light harvesting, catalyst design, device configurations and waste pre-treatment strategies, a range of sustainable fuels and value-added chemicals can already be selectively produced from diverse waste feedstocks, including biomass and plastics, demonstrating the potential of solar-powered upcycling plants. This Review highlights solar reforming as an emerging technology that is currently transitioning from fundamental research towards practical application. We investigate the chemistry and compatibility of waste pre-treatment, introduce process classifications, explore the mechanisms of different solar reforming technologies, and suggest appropriate concepts, metrics and pathways for various deployment scenarios in a net-zero-carbon future.

10.
Angew Chem Int Ed Engl ; 63(8): e202310547, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-37983571

ABSTRACT

Electrocatalytic CO2 reduction has developed into a broad field, spanning fundamental studies of enzymatic 'model' catalysts to synthetic molecular catalysts and heterogeneous gas diffusion electrodes producing commercially relevant quantities of product. This diversification has resulted in apparent differences and a disconnect between seemingly related approaches when using different types of catalysts. Enzymes possess discrete and well understood active sites that can perform reactions with high selectivity and activities at their thermodynamic limit. Synthetic small molecule catalysts can be designed with desired active site composition but do not yet display enzyme-like performance. These properties of the biological and small molecule catalysts contrast with heterogeneous materials, which can contain multiple, often poorly understood active sites with distinct reactivity and therefore introducing significant complexity in understanding their activities. As these systems are being better understood and the continuously improving performance of their heterogeneous active sites closes the gap with enzymatic activity, this performance difference between heterogeneous and enzymatic systems begins to close. This convergence removes the barriers between using different types of catalysts and future challenges can be addressed without multiple efforts as a unified picture for the biological-synthetic catalyst spectrum emerges.


Subject(s)
Carbon Dioxide , Diffusion , Electrodes , Thermodynamics
11.
Green Chem ; 25(24): 10611-10621, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38089755

ABSTRACT

The simultaneous upcycling of all components in lignocellulosic biomass and the greenhouse gas CO2 presents an attractive opportunity to synthesise sustainable and valuable chemicals. However, this approach is challenging to realise due to the difficulty of implementing a solution process to convert a robust and complex solid (lignocellulose) together with a barely soluble and stable gas (CO2). Herein, we present the complete oxidative valorisation of lignocellulose coupled to the reduction of low concentration CO2 through a three-stage fractionation-photocatalysis-electrolysis process. Lignocellulose from white birch wood was first pre-treated using an acidic solution to generate predominantly cellulosic- and lignin-based fractions. The solid cellulosic-based fraction was solubilised using cellulase (a cellulose depolymerising enzyme), followed by photocatalytic oxidation to formate with concomitant reduction of CO2 to syngas (a gas mixture of CO and H2) using a phosphonate-containing cobalt(ii) bis(terpyridine) catalyst immobilised onto TiO2 nanoparticles. Photocatalysis generated 27.9 ± 2.0 µmolCO gTiO2-1 (TONCO = 2.8 ± 0.2; 16% CO selectivity) and 147.7 ± 12.0 µmolformate gTiO2-1 after 24 h solar light irradiation under 20 vol% CO2 in N2. The soluble lignin-based fraction was oxidised in an electrolyser to the value-added chemicals vanillin (0.62 g kglignin-1) and syringaldehyde (1.65 g kglignin-1) at the anode, while diluted CO2 (20 vol%) was converted to CO (20.5 ± 0.2 µmolCO cm-2 in 4 h) at a Co(ii) porphyrin catalyst modified cathode (TONCO = 707 ± 7; 78% CO selectivity) at an applied voltage of -3 V. We thus demonstrate the complete valorisation of solid and a gaseous waste stream in a liquid phase process by combining fractioning, photo- and electrocatalysis using molecular hybrid nanomaterials assembled from earth abundant elements.

12.
J Am Chem Soc ; 145(37): 20355-20364, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37671930

ABSTRACT

Plastic upcycling through catalytic transformations is an attractive concept to valorize waste, but the clean and energy-efficient production of high-value products from plastics remains challenging. Here, we introduce chemoenzymatic photoreforming as a process coupling enzymatic pretreatment and solar-driven reforming of polyester plastics under mild temperatures and pH to produce clean H2 and value-added chemicals. Chemoenzymatic photoreforming demonstrates versatility in upcycling polyester films and nanoplastics to produce H2 at high yields reaching ∼103-104 µmol gsub-1 and activities at >500 µmol gcat-1 h-1. Enzyme-treated plastics were also used as electron donors for photocatalytic CO2-to-syngas conversion with a phosphonated cobalt bis(terpyridine) catalyst immobilized on TiO2 nanoparticles (TiO2|CotpyP). Finally, techno-economic analyses reveal that the chemoenzymatic photoreforming approach has the potential to drastically reduce H2 production costs to levels comparable to market prices of H2 produced from fossil fuels while maintaining low CO2-equivalent emissions.

13.
Nanoscale ; 15(38): 15775-15784, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37740380

ABSTRACT

Carbon dots (CDs) are low-cost light-absorbers in photocatalytic multicomponent systems, but their wide size distribution has hampered rational design and the identification of the factors that lead to their best performance. To address this challenge, we report herein the use of gel filtration size exclusion chromatography to separate amorphous, graphitic, and graphitic N-doped CDs depending on their lateral size to study the effect of their size on photocatalytic H2 evolution with a DuBois-type Ni cocatalyst. Transmission electron microscopy and dynamic light scattering confirm the size-dependent separation of the CDs, whereas UV-vis and fluorescence spectroscopy of the more monodisperse fractions show a distinct response which computational modelling attributes to a complex interplay between CD size and optical properties. A size-dependent effect on the photocatalytic H2 evolution performance of the CDs in combination with a molecular Ni cocatalyst is demonstrated with a maximum activity at approximately 2-3 nm CD diameter. Overall, size separation leads to a two-fold increase in the specific photocatalytic activity for H2 evolution using the monodisperse CDs compared to the as synthesized polydisperse samples, highlighting the size-dependent effect on photocatalytic performance.

14.
ACS Catal ; 13(13): 9090-9101, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37441232

ABSTRACT

Optical monitoring and screening of photocatalytic batch reactions using cuvettes ex situ is time-consuming, requires substantial amounts of samples, and does not allow the analysis of species with low extinction coefficients. Hollow-core photonic crystal fibers (HC-PCFs) provide an innovative approach for in situ reaction detection using ultraviolet-visible absorption spectroscopy, with the potential for high-throughput automation using extremely low sample volumes with high sensitivity for monitoring of the analyte. HC-PCFs use interference effects to guide light at the center of a microfluidic channel and use this to enhance detection sensitivity. They open the possibility of comprehensively studying photocatalysts to extract structure-activity relationships, which is unfeasible with similar reaction volume, time, and sensitivity in cuvettes. Here, we demonstrate the use of HC-PCF microreactors for the screening of the electron transfer properties of carbon dots (CDs), a nanometer-sized material that is emerging as a homogeneous light absorber in photocatalysis. The CD-driven photoreduction reaction of viologens (XV2+) to the corresponding radical monocation XV•+ is monitored in situ as a model reaction, using a sample volume of 1 µL per measurement and with a detectability of <1 µM. A range of different reaction conditions have been systematically studied, including different types of CDs (i.e., amorphous, graphitic, and graphitic nitrogen-doped CDs), surface chemistry, viologens, and electron donors. Furthermore, the excitation irradiance was varied to study its effect on the photoreduction rate. The findings are correlated with the electron transfer properties of CDs based on their electronic structure characterized by soft X-ray absorption spectroscopy. Optofluidic microreactors with real-time optical detection provide unique insight into the reaction dynamics of photocatalytic systems and could form the basis of future automated catalyst screening platforms, where samples are only available on small scales or at a high cost.

15.
J Am Chem Soc ; 145(25): 13709-13714, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37310357

ABSTRACT

Photoelectrochemical devices could play a crucial role toward fuel production in a circular economy. Yet, light absorption suffers losses from thermalization and the inability to use low-energy photons. Here, we demonstrate that photoelectrochemical reactors can utilize this waste heat by integrating thermoelectric modules, which provide additional voltage under concentrated light irradiation. While most single semiconductors require external bias, we already accomplish unassisted water splitting under 2 sun irradiation by wiring a BiVO4 photoanode to a thermoelectric element, whereas the photocurrent of a perovskite-BiVO4 tandem system is enhanced 1.7-fold at 5 sun. This strategy is particularly suitable for photoanodes with more positive onset potentials like hematite, with thermoelectric-perovskite-Fe2O3 systems achieving a 29.7× overall photocurrent increase at 5 sun over conventional perovskite-Fe2O3 devices without light concentration. This thermal management approach provides a universal strategy to facilitate widespread solar fuel production, as light concentration increases output, reduces the reactor size and cost, and may enhance catalysis.

16.
Adv Sci (Weinh) ; 10(21): e2207314, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37171802

ABSTRACT

Solar reforming (SR) is a promising green-energy technology that can use sunlight to mitigate biomass and plastic waste while producing hydrogen gas at ambient pressure and temperature. However, practical challenges, including photocatalyst lifetime, recyclability, and low production rates in turbid waste suspensions, limit SR's industrial potential. By immobilizing SR catalyst materials (carbon nitride/platinum; CNx |Pt and carbon nitride/nickel phosphide; CNx |Ni2 P) on hollow glass microspheres (HGM), which act as floating supports enabling practical composite recycling, such limitations can be overcome. Substrates derived from plastic and biomass, including poly(ethylene terephthalate) (PET) and cellulose, are reformed by floating SR composites, which are reused for up to ten consecutive cycles under realistic, vertical simulated solar irradiation (AM1.5G), reaching activities of 1333 ± 240 µmolH2 m-2 h-1 on pre-treated PET. Floating SR composites are also advantageous in realistic waste where turbidity prevents light absorption by non-floating catalyst powders, achieving 338.1 ± 1.1 µmolH2 m-2 h-1 using floating CNx versus non-detectable H2 production with non-floating CNx and a pre-treated PET bottle as substrate. Low Pt loadings (0.033 ± 0.0013% m/m) demonstrate consistent performance and recyclability, allowing efficient use of precious metals for SR hydrogen production from waste substrates at large areal scale (217 cm2 ), taking an important step toward practical SR implementation.

17.
Angew Chem Int Ed Engl ; 62(26): e202218782, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37078435

ABSTRACT

The electrolysis of dilute CO2 streams suffers from low concentrations of dissolved substrate and its rapid depletion at the electrolyte-electrocatalyst interface. These limitations require first energy-intensive CO2 capture and concentration, before electrolyzers can achieve acceptable performances. For direct electrocatalytic CO2 reduction from low-concentration sources, we introduce a strategy that mimics the carboxysome in cyanobacteria by utilizing microcompartments with nanoconfined enzymes in a porous electrode. A carbonic anhydrase accelerates CO2 hydration kinetics and minimizes substrate depletion by making all dissolved carbon available for utilization, while a highly efficient formate dehydrogenase reduces CO2 cleanly to formate; down to even atmospheric concentrations of CO2 . This bio-inspired concept demonstrates that the carboxysome provides a viable blueprint for the reduction of low-concentration CO2 streams to chemicals by using all forms of dissolved carbon.


Subject(s)
Carbonic Anhydrases , Cyanobacteria , Carbon Dioxide , Organelles , Carbon
18.
Angew Chem Int Ed Engl ; 62(20): e202215894, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36888559

ABSTRACT

Formate production via both CO2 reduction and cellulose oxidation in a solar-driven process is achieved by a semi-artificial biohybrid photocatalyst consisting of immobilized formate dehydrogenase on titanium dioxide (TiO2 |FDH) producing up to 1.16±0.04 mmolformate g TiO 2 ${{_{\ {\rm TiO}{_{2}}}}}$ -1 in 24 hours at 30 °C and 101 kPa under anaerobic conditions. Isotopic labeling experiments with 13 C-labeled substrates support the mechanism of stoichiometric formate formation through both redox half-reactions. TiO2 |FDH was further immobilized on hollow glass microspheres to perform more practical floating photoreforming allowing vertical solar light illumination with optimal light exposure of the photocatalyst to real sunlight. Enzymatic cellulose depolymerization coupled to the floating photoreforming catalyst generates 0.36±0.04 mmolformate per m2 irradiation area after 24 hours. This work demonstrates the synergistic solar-driven valorization of solid and gaseous waste streams using a biohybrid photoreforming catalyst in aqueous solution and will thus provide inspiration for the development of future semi-artificial waste-to-chemical conversion strategies.

19.
Nature ; 615(7954): 836-840, 2023 03.
Article in English | MEDLINE | ID: mdl-36949188

ABSTRACT

Photosystems II and I (PSII, PSI) are the reaction centre-containing complexes driving the light reactions of photosynthesis; PSII performs light-driven water oxidation and PSI further photo-energizes harvested electrons. The impressive efficiencies of the photosystems have motivated extensive biological, artificial and biohybrid approaches to 're-wire' photosynthesis for higher biomass-conversion efficiencies and new reaction pathways, such as H2 evolution or CO2 fixation1,2. Previous approaches focused on charge extraction at terminal electron acceptors of the photosystems3. Electron extraction at earlier steps, perhaps immediately from photoexcited reaction centres, would enable greater thermodynamic gains; however, this was believed impossible with reaction centres buried at least 4 nm within the photosystems4,5. Here, we demonstrate, using in vivo ultrafast transient absorption (TA) spectroscopy, extraction of electrons directly from photoexcited PSI and PSII at early points (several picoseconds post-photo-excitation) with live cyanobacterial cells or isolated photosystems, and exogenous electron mediators such as 2,6-dichloro-1,4-benzoquinone (DCBQ) and methyl viologen. We postulate that these mediators oxidize peripheral chlorophyll pigments participating in highly delocalized charge-transfer states after initial photo-excitation. Our results challenge previous models that the photoexcited reaction centres are insulated within the photosystem protein scaffold, opening new avenues to study and re-wire photosynthesis for biotechnologies and semi-artificial photosynthesis.


Subject(s)
Photosynthesis , Photosystem I Protein Complex , Photosystem II Protein Complex , Chlorophyll/metabolism , Oxidation-Reduction , Photosystem I Protein Complex/metabolism , Photosystem II Protein Complex/metabolism , Time Factors , Carbon Cycle , Carbon Dioxide/metabolism , Hydrogen/metabolism , Cyanobacteria/metabolism , Electrons , Thermodynamics
20.
Chem Commun (Camb) ; 59(7): 944-947, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36597867

ABSTRACT

We report a H2 evolving hybrid photocathode based on Sb2Se3 and a precious metal free molecular catalyst. Through the use of a high surface area TiO2 scaffold, we successfully increased the Ni molecular catalyst loading from 7.08 ± 0.43 to 45.76 ± 0.81 nmol cm-2, achieving photocurrents of 1.3 mA cm-2 at 0 V vs. RHE, which is 81-fold higher than the device without the TiO2 mesoporous layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...