Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Biomolecules ; 14(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38672524

ABSTRACT

Neuronal plasticity is a crucial mechanism for an adapting nervous system to change. It is shown to be regulated by perineuronal nets (PNNs), the condensed forms of the extracellular matrix (ECM) around neuronal bodies. By assessing the changes in the number, intensity, and structure of PNNs, the ultrastructure of the PNN mesh, and the expression of inhibitory and excitatory synaptic inputs on these neurons, we aimed to clarify the role of an ECM glycoprotein, tenascin-C (TnC), in the dorsal hippocampus. To enhance neuronal plasticity, TnC-deficient (TnC-/-) and wild-type (TnC+/+) young adult male mice were reared in an enriched environment (EE) for 8 weeks. Deletion of TnC in TnC-/- mice showed an ultrastructural reduction of the PNN mesh and an increased inhibitory input in the dentate gyrus (DG), and an increase in the number of PNNs with a rise in the inhibitory input in the CA2 region. EE induced an increased inhibitory input in the CA2, CA3, and DG regions; in DG, the change was also followed by an increased intensity of PNNs. No changes in PNNs or synaptic expression were found in the CA1 region. We conclude that the DG and CA2 regions emerged as focal points of alterations in PNNs and synaptogenesis with EE as mediated by TnC.


Subject(s)
Extracellular Matrix , Hippocampus , Neuronal Plasticity , Synapses , Tenascin , Animals , Tenascin/metabolism , Tenascin/genetics , Male , Mice , Hippocampus/metabolism , Extracellular Matrix/metabolism , Synapses/metabolism , Mice, Knockout , Neurons/metabolism , Mice, Inbred C57BL , Dentate Gyrus/metabolism
2.
Front Neurosci ; 17: 1187758, 2023.
Article in English | MEDLINE | ID: mdl-37434764

ABSTRACT

Introduction: There is an increasing evidence supporting the hypothesis that traumatic experiences during early developmental periods might be associated with psychopathology later in life. Maternal deprivation (MD) in rodents has been proposed as an animal model for certain aspects of neuropsychiatric disorders. Methods: To determine whether early-life stress leads to changes in GABAergic, inhibitory interneurons in the limbic system structures, specifically the amygdala and nucleus accumbens, 9-day-old Wistar rats were exposed to a 24 h MD. On postnatal day 60 (P60), the rats were sacrificed for morphometric analysis and their brains were compared to the control group. Results: Results show that MD affect GABAergic interneurons, leading to the decrease in density and size of the calcium-binding proteins parvalbumin-, calbindin-, and calretinin-expressing interneurons in the amygdala and nucleus accumbens. Discussion: This study indicates that early stress in life leads to changes in the number and morphology of the GABAergic, inhibitory interneurons in the amygdala and nucleus accumbens, most probably due to the loss of neurons during postnatal development and it further contributes to understanding the effects of maternal deprivation on brain development.

3.
Front Cell Dev Biol ; 10: 982663, 2022.
Article in English | MEDLINE | ID: mdl-36518543

ABSTRACT

Early life stress negatively impacts brain development and affects structure and function of parvalbumin immunopositive (PV+) inhibitory neurons. Main regulators of PV+ interneurons activity and plasticity are perineuronal nets (PNNs), an extracellular matrix formation that enwraps PV+ interneurons mainly in the neocortex and hippocampus. To experimentally address the impact of early life stress on the PNNs and PV+ interneurons in the medial prefrontal cortex and dorsal hippocampus in rats, we employed a 24 h maternal deprivation protocol. We show that maternal deprivation in the medial prefrontal cortex of adult rats caused a decrease in density of overall PNNs and PNNs that enwrap PV+ interneurons in the rostral cingulate cortex. Furthermore, a staining intensity decrease of overall PNNs and PNN+/PV+ cells was found in the prelimbic cortex. Finally, a decrease in both intensity and density of overall PNNs and PNNs surrounding PV+ cells was observed in the infralimbic cortex, together with increase in the intensity of VGAT inhibitory puncta. Surprisingly, maternal deprivation did not cause any changes in the density of PV+ interneurons in the mPFC, neither had it affected PNNs and PV+ interneurons in the hippocampus. Taken together, our findings indicate that PNNs, specifically the ones enwrapping PV+ interneurons in the medial prefrontal cortex, are affected by early life stress.

4.
Front Cell Dev Biol ; 10: 952208, 2022.
Article in English | MEDLINE | ID: mdl-36092707

ABSTRACT

Understanding processes that occur after injuries to the central nervous system is essential in order to gain insight into how the restoration of function can be improved. Extracellular glycoprotein tenascin-C (TnC) has numerous functions in wound healing process depending on the expression time, location, isoform and binding partners which makes it interesting to study in this context. We used an in vitro injury model, the mixed culture of cortical astrocytes and microglia, and observed that without TnC microglial cells tend to populate gap area in greater numbers and proliferate more, whereas astrocytes build up in the border region to promote faster gap closure. Alternatively spliced domain of TnC, fibronectin type III-like repeat D (FnD) strongly affected physiological properties and morphology of both astrocytes and microglia in this injury model. The rate of microglial proliferation in the injury region decreased significantly with the addition of FnD. Additionally, density of microglia also decreased, in part due to reduced proliferation, and possibly due to reduced migration and increased contact inhibition between enlarged FnD-treated cells. Overall morphology of FnD-treated microglia resembled the activated pro-inflammatory cells, and elevated expression of iNOS was in accordance with this phenotype. The effect of FnD on astrocytes was different, as it did not affect their proliferation, but stimulated migration of reactivated astrocytes into the scratched area 48 h after the lesion. Elevated expression and secretion of TNF-α and IL-1ß upon FnD treatment indicated the onset of inflammation. Furthermore, on Western blots we observed increased intensity of precursor bands of ß1 integrin and appearance of monomeric bands of P2Y12R after FnD treatment which substantiates and clarifies its role in cellular shape and motility changes. Our results show versatile functions of TnC and in particular FnD after injury, mostly contributing to ongoing inflammation in the injury region. Based on our findings, FnD might be instrumental in limiting immune cell infiltration, and promoting astrocyte migration within the injury region, thus influencing spaciotemporal organization of the wound and surrounding area.

5.
Front Cell Dev Biol ; 10: 917575, 2022.
Article in English | MEDLINE | ID: mdl-35733853

ABSTRACT

The extracellular matrix (ECM) of the nervous system can be considered as a dynamically adaptable compartment between neuronal cells, in particular neurons and glial cells, that participates in physiological functions of the nervous system. It is mainly composed of carbohydrates and proteins that are secreted by the different kinds of cell types found in the nervous system, in particular neurons and glial cells, but also other cell types, such as pericytes of capillaries, ependymocytes and meningeal cells. ECM molecules participate in developmental processes, synaptic plasticity, neurodegeneration and regenerative processes. As an example, the ECM of the hippocampal formation is involved in degenerative and adaptive processes related to epilepsy. The role of various components of the ECM has been explored extensively. In particular, the ECM protein reelin, well known for orchestrating the formation of neuronal layer formation in the cerebral cortex, is also considered as a player involved in the occurrence of postnatal granule cell dispersion (GCD), a morphologically peculiar feature frequently observed in hippocampal tissue from epileptic patients. Possible causes and consequences of GCD have been studied in various in vivo and in vitro models. The present review discusses different interpretations of GCD and different views on the role of ECM protein reelin in the formation of this morphological peculiarity.

6.
Neural Regen Res ; 17(8): 1802-1808, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35017441

ABSTRACT

The role that the immune system plays after injury of the peripheral nervous system is still not completely understood. Perforin, a natural killer cell- and T-lymphocyte-derived enzyme that mediates cytotoxicity, plays important roles in autoimmune diseases, infections and central nervous system trauma, such as spinal cord injury. To dissect the roles of this single component of the immune response to injury, we tested regeneration after femoral nerve injury in perforin-deficient (Pfp-/-) and wild-type control mice. Single frame motion analysis showed better motor recovery in Pfp-/- mice compared with control mice at 4 and 8 weeks after injury. Retrograde tracing of the motoneuron axons regrown into the motor nerve branch demonstrated more correctly projecting motoneurons in the spinal cord of Pfp-/- mice compared with wild-types. Myelination of regrown axons measured by g-ratio was more extensive in Pfp-/- than in wild-type mice in the motor branch of the femoral nerve. Pfp-/- mice displayed more cholinergic synaptic terminals around cell bodies of spinal motoneurons after injury than the injured wild-types. We histologically analyzed lymphocyte infiltration 10 days after surgery and found that in Pfp-/- mice the number of lymphocytes in the regenerating nerves was lower than in wild-types, suggesting a closed blood-nerve barrier in Pfp-/- mice. We conclude that perforin restricts motor recovery after femoral nerve injury owing to decreased survival of motoneurons and reduced myelination.

7.
Development ; 148(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34414407

ABSTRACT

Reelin is a large secreted glycoprotein that regulates neuronal migration, lamination and establishment of dendritic architecture in the embryonic brain. Reelin expression switches postnatally from Cajal-Retzius cells to interneurons. However, reelin function in interneuron development is still poorly understood. Here, we have investigated the role of reelin in interneuron development in the postnatal neocortex. To preclude early cortical migration defects caused by reelin deficiency, we employed a conditional reelin knockout (RelncKO) mouse to induce postnatal reelin deficiency. Induced reelin deficiency caused dendritic hypertrophy in distal dendritic segments of neuropeptide Y-positive (NPY+) and calretinin-positive (Calr+) interneurons, and in proximal dendritic segments of parvalbumin-positive (Parv+) interneurons. Chronic recombinant Reelin treatment rescued dendritic hypertrophy in Relncko interneurons. Moreover, we provide evidence that RelncKO interneuron hypertrophy is due to presynaptic GABABR dysfunction. Thus, GABABRs in RelncKO interneurons were unable to block N-type (Cav2.2) Ca2+ channels that control neurotransmitter release. Consequently, the excessive Ca2+ influx through AMPA receptors, but not NMDA receptors, caused interneuron dendritic hypertrophy. These findings suggest that reelin acts as a 'stop-growth-signal' for postnatal interneuron maturation.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , Dendrites/metabolism , Extracellular Matrix Proteins/metabolism , Interneurons/cytology , Neocortex/growth & development , Nerve Tissue Proteins/metabolism , Serine Endopeptidases/metabolism , Animals , Calbindin 2/metabolism , Calcium/metabolism , Cell Adhesion Molecules, Neuronal/deficiency , Cell Adhesion Molecules, Neuronal/pharmacology , Dendrites/drug effects , Extracellular Matrix Proteins/deficiency , Extracellular Matrix Proteins/pharmacology , Hypertrophy , Interneurons/drug effects , Interneurons/metabolism , Mice , Mice, Knockout , Neocortex/cytology , Neocortex/drug effects , Neocortex/pathology , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/pharmacology , Neuropeptide Y/metabolism , Parvalbumins/metabolism , Receptors, GABA-B/metabolism , Receptors, Glutamate/metabolism , Reelin Protein , Serine Endopeptidases/deficiency , Serine Endopeptidases/pharmacology
8.
Neuroscience ; 459: 129-141, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33588005

ABSTRACT

Microglia/macrophages play important functional roles in regeneration after central nervous system injury. Infiltration of circulating macrophages and proliferation of resident microglia occur within minutes following spinal cord injury. Activated microglia/macrophages clear tissue debris, but activation over time may hamper repair. To study the role of these cells in regeneration after spinal cord injury we used CD11b-herpes simplex virus thymidine kinase (HSVTK) (TK) transgenic mice, in which viral thymidine kinase activates ganciclovir toxicity in CD11b-expressing myeloid cells, including macrophages and microglia. A severe reduction in number of these cells was seen in TK versus wild-type littermate mice at 1 week and 5 weeks after injury, and numbers of Mac-2 expressing activated microglia/macrophages were almost completely reduced at these time points. One week after injury TK mice showed better locomotor recovery, but recovery was similar to wild-type mice as measured weekly up to 5 weeks thereafter. At 5 weeks after injury, numbers of axons at the lesion site and neurons in the lumbar spinal cord did not differ between groups. Also, catecholaminergic innervation of spinal motoneurons was similar. However, cholinergic innervation was lower and glial scarring was increased in TK mice compared to wild-type mice. We conclude that reducing numbers of CD11b-expressing cells improves locomotor recovery in the early phase after spinal cord injury, but does not affect recovery in the following 4 weeks. These observations point to differences in outcomes of astrocytic response and cholinergic innervation under CD11b cell ablation, which are, however, not reflected in the locomotor parameters analyzed at 5 weeks after injury.


Subject(s)
Microglia , Spinal Cord Injuries , Animals , Macrophages , Mice , Mice, Inbred C57BL , Mice, Transgenic , Recovery of Function , Spinal Cord
9.
J Neurochem ; 156(5): 589-603, 2021 03.
Article in English | MEDLINE | ID: mdl-32083308

ABSTRACT

Reelin is a protein that is best known for its role in controlling neuronal layer formation in the developing cortex. Here, we studied its role for post-natal cortical network function, which is poorly explored. To preclude early cortical migration defects caused by Reelin deficiency, we used a conditional Reelin knock-out (RelncKO ) mouse, and induced Reelin deficiency post-natally. Induced Reelin deficiency caused hyperexcitability of the neocortical network in vitro and ex vivo. Blocking Reelin binding to its receptors ApoER2 and VLDLR resulted in a similar effect. Hyperexcitability in RelncKO organotypic slice cultures could be rescued by co-culture with wild-type organotypic slice cultures. Moreover, the GABAB receptor (GABAB R) agonist baclofen failed to activate and the antagonist CGP35348 failed to block GABAB Rs in RelncKO mice. Immunolabeling of RelncKO cortical slices revealed a reduction in GABAB R1 and GABAB R2 surface expression at the plasma membrane and western blot of RelncKO cortical tissue revealed decreased phosphorylation of the GABAB R2 subunit at serine 892 and increased phosphorylation at serine 783, reflecting receptor deactivation and proteolysis. These data show a role of Reelin in controlling early network activity, by modulating GABAB R function. Cover Image for this issue: https://doi.org/10.1111/jnc.15054.


Subject(s)
Cell Adhesion Molecules, Neuronal/deficiency , Extracellular Matrix Proteins/deficiency , Neocortex/metabolism , Nerve Tissue Proteins/deficiency , Receptors, GABA-B/physiology , Serine Endopeptidases/deficiency , Signal Transduction/physiology , Animals , Animals, Newborn , Cell Adhesion Molecules, Neuronal/genetics , Extracellular Matrix Proteins/genetics , Female , GABA-B Receptor Agonists/pharmacology , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Organ Culture Techniques , Reelin Protein , Serine Endopeptidases/genetics , Signal Transduction/drug effects
10.
J Neurosci Methods ; 337: 108666, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32119875

ABSTRACT

BACKGROUND: Biolistic gene gun transfection has been used to transfect organotypic cultures (OTCs) or dissociated cultures in vitro. Here, we modified this technique to allow successful transfection of acute brain slices, followed by measurement of neuronal activity within a few hours. NEW METHOD: We established biolistic transfection of murine acute cortical slices to measure calcium signals. Acute slices are mounted on plasma/thrombin coagulate and transfected with a calcium sensor. Imaging can be performed within 4 h post transfection without affecting cell viability. RESULTS: Four hours after GCaMP6s transfection, acute slices display remarkable fluorescent protein expression level allowing to study spontaneous activity and receptor pharmacology. While optimal gas pressure (150 psi) and gold particle size used (1 µm) confirm previously published protocols, the amount of 5 µg DNA was found to be optimal for particle coating. COMPARISON WITH EXISTING METHODS: The major advantage of this technique is the rapid disposition of acute slices for calcium imaging. No transgenic GECI expressing animals or OTC for long periods are required. In acute slices, network interaction and connectivity are preserved. The method allows to obtain physiological readouts within 4 h, before functional tissue modifications might come into effect. Limitations of this technique are random transfection, low expression efficiency when using specific promotors, and preclusion or genetic manipulations that require a prolonged time before physiological changes become measurable, such as expression of recombinant proteins that require transport to distant subcellular localizations. CONCLUSION: The method is optimal for short-time investigation of calcium signals in acute slices.


Subject(s)
Biolistics , Neurons , Animals , DNA , Gene Transfer Techniques , Mice , Transfection
11.
J Struct Biol ; 191(2): 190-6, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26073969

ABSTRACT

Reconstruction of the three-dimensional (3D) surface of an object to be examined is widely used for structure analysis in science and many biological questions require information about their true 3D structure. For Scanning Electron Microscopy (SEM) there has been no efficient non-destructive solution for reconstruction of the surface morphology to date. The well-known method of recording stereo pair images generates a 3D stereoscope reconstruction of a section, but not of the complete sample surface. We present a simple and non-destructive method of 3D surface reconstruction from SEM samples based on the principles of optical close range photogrammetry. In optical close range photogrammetry a series of overlapping photos is used to generate a 3D model of the surface of an object. We adapted this method to the special SEM requirements. Instead of moving a detector around the object, the object itself was rotated. A series of overlapping photos was stitched and converted into a 3D model using the software commonly used for optical photogrammetry. A rabbit kidney glomerulus was used to demonstrate the workflow of this adaption. The reconstruction produced a realistic and high-resolution 3D mesh model of the glomerular surface. The study showed that SEM micrographs are suitable for 3D reconstruction by optical photogrammetry. This new approach is a simple and useful method of 3D surface reconstruction and suitable for various applications in research and teaching.


Subject(s)
Imaging, Three-Dimensional/methods , Kidney Glomerulus/ultrastructure , Microscopy, Electron, Scanning , Software , Animals , Printing, Three-Dimensional , Rabbits
13.
Am J Cardiol ; 105(1): 1-9, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20102882

ABSTRACT

We aimed to assess the additive diagnostic value of measuring the serum levels of soluble human heart-type fatty acid binding protein (H-FABP) in the early diagnosis of acute myocardial infarction (AMI) in unselected patients with chest pain. A total of 97 consecutive patients with acute ischemic-type chest pain were prospectively enrolled and classified according to the American Heart Association/American College of Cardiology guidelines. The test characteristics of H-FABP and cardiac troponin T serum levels at admission revealed a greater sensitivity of H-FABP in the first 4 hours of symptoms (86% vs 42%, p <0.05). Combining H-FABP and cardiac troponin T also improved the sensitivity in the detection of AMI (97% vs 71%, p <0.05) but demonstrated a greater misclassification rate (25% vs 9%, p <0.05). The specificity of H-FABP was poor (65%, 95% confidence interval 58% to 71%). Receiver operating characteristics revealed a poor performance of H-FABP in patients with non-ST-elevation myocardial infarction. Classification tree analysis demonstrated that an H-FABP-related improvement in the early definite rule-out of AMI (reduction of false-negative rate from 11% to 3%) was at the expense of an increase in the false-positive rate to 5%. In conclusion, measurement of H-FABP, in addition to cardiac troponin T, serum levels within the first 4 hours of symptoms improves the sensitivity and negative predictive value for the detection of AMI at the cost of test accuracy and precision, especially in patients with non-ST-elevation myocardial infarction.


Subject(s)
Fatty Acid-Binding Proteins/blood , Myocardial Infarction/diagnosis , Troponin T/blood , Aged , Biomarkers/blood , Diagnosis, Differential , Electrocardiography , Enzyme-Linked Immunosorbent Assay , Fatty Acid Binding Protein 3 , Female , Follow-Up Studies , Humans , Male , Myocardial Infarction/blood , Prospective Studies , ROC Curve , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...