Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Risk Anal ; 44(1): 229-243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37094799

ABSTRACT

Cascading risks that can spread through complex systems have recently gained attention. As it is crucial for decision-makers to put figures on such risks and their interactions, models that explicitly capture such interactions in a realistic manner are needed. Climate related hazards often cascade through different systems, from physical to economic and social systems, causing direct but also indirect risks and losses. Despite their growing importance in the light of ongoing climate change and increasing global connections, such indirect risks are not well understood. Applying two fundamentally different economic models-a computable general equilibrium model and an agent-based model-we reveal indirect risks of flood events. The models are fed with sector-specific capital stock damages, which constitutes a major methodological improvement. We apply these models for Austria, a highly flood exposed country with strong economic linkages. A key finding is that flood damages pose very different indirect risks to different sectors and household groups (distributional effects) in the short and long-term. Our results imply that risk management should focus on specific societal subgroups and sectors. We provide a simple metric for indirect risk, showing how direct and indirect losses are related. This can provide new ways forward in risk management, for example, focusing on interconnectedness of sectors and agents within different risk-layers of indirect risk. Although we offer highly relevant leverage points for indirect risk management in Austria, the methodology of analyzing indirect risks can be transferred to other regions.

2.
iScience ; 26(5): 106736, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37216095

ABSTRACT

In our increasingly interconnected world, natural hazards and their impacts spread across geographical, administrative, and sectoral boundaries. Owing to the interrelationships between multi-hazards and socio-economic dimensions, the impacts of these types of events can surmount those of multiple single hazards. The complexities involved in tackling multi-hazards and multi-risks hinder a more holistic and integrative perspective and make it difficult to identify overarching dimensions important for assessment and management purposes. We contribute to this discussion by building on systemic risk research, especially the focus on interconnectedness, and suggest ways forward for an integrated multi-hazard and multi-risk framework that should be beneficial in real-world applications. In this article, we propose a six-step framework for analyzing and managing risk across a spectrum ranging from single-to multi- and systemic risk.

3.
Glob Ecol Biogeogr ; 32(6): 855-866, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38504954

ABSTRACT

Aim: Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe. Location: Global. Time period: Present. Major taxa studied: Birds, mammals and amphibians. Methods: Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a "species-energy model" by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in "wilderness" areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists. Results: Species-energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R 2-values: 0.79-0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57). Main conclusions: Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species-area relationships to improve predictions of land-use-driven biodiversity loss.

SELECTION OF CITATIONS
SEARCH DETAIL
...