Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Bioanal Chem ; 416(5): 1199-1215, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177453

ABSTRACT

Carboxylic acids (CAs) are key players in human and animal metabolism. As they are hardly retained under reversed-phase liquid chromatography (RP-LC) conditions in their native form, derivatization is an option to make them accessible to RP-LC and simultaneously increase their response for mass spectrometric detection. In this work, two RP-LC tandem mass spectrometry-based methods using aniline or 3-nitrophenylhydrazine (3-NPH) as derivatization agents were compared with respect to several factors including completeness of derivatization, apparent recoveries (RAs) in both cow feces and ruminal fluid, and concentrations obtained in feces and ruminal fluid of cows. Anion exchange chromatography coupled to high-resolution mass spectrometry (AIC-HR-MS) served as reference method. Derivatization efficiencies were close to 100% for 3-NPH derivatization but variable (20-100%) and different in solvent solutions and matrix extracts for aniline derivatization. Likewise, average RAs of 13C-labeled short-chain fatty acids as internal standards were around 100% for 3-NPH derivatization but only 45% for aniline derivatization. Quantification of CAs in feces and ruminal fluid of cows initially fed a forage-only diet and then transitioned to a 65% high-grain diet which yielded similar concentrations for 3-NPH derivatization and AIC-HR-MS, but concentrations determined by aniline derivatization were on average five times lower. For these reasons, derivatization with aniline is not recommended for the quantitative analysis of CAs in animal samples.


Subject(s)
Carboxylic Acids , Tandem Mass Spectrometry , Humans , Female , Animals , Cattle , Chromatography, Liquid/methods , Carboxylic Acids/chemistry , Tandem Mass Spectrometry/methods , Liquid Chromatography-Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Aniline Compounds
2.
Toxicol Lett ; 306: 43-52, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30769082

ABSTRACT

Plant-derived mycotoxin conjugates like deoxynivalenol-3-glucoside can be partly hydrolyzed to their aglycones in vivo, albeit to different extent depending on the mycotoxin conjugate and on the animal species. The aim of this work was to investigate the metabolization of the trichothecene mycotoxin nivalenol (NIV) and the fate of its modified form NIV-3-glucoside (NIV3G) in rats. To that end, 350 µg/kg body weight of NIV and the equimolar dose of NIV3G were administered to six rats by gavage in a 5 × 6 design and excreta were collected for 2 days after each treatment. For further analysis of NIV and NIV3G metabolites in rat urine and feces, seven novel NIV- and NIV3G metabolites including NIV sulfonates (NIVS) 1, 2 and 3, deepoxy-NIV (DNIV), DNIV sulfonate 2, NIV3G sulfonate (NIV3GS) 2 and NIV-3-glucuronide were produced, isolated and characterized. Subsequently, LC-MS/MS based methods for determination of NIV, NIV3G and their metabolites in excreta samples were developed, validated and applied. The biological recoveries of administered toxins in the form of their fecal and urinary metabolites were 57 ± 21% for NIV and 94 ± 36% for NIV3G. The majority of NIV and NIV3G metabolites was excreted into feces, with DNIV and NIVS 2 as major NIV metabolites and NIV3GS 2 and DNIV as major metabolites of NIV3G. Only 1.5% of the administered NIV3G was recovered in urine, with NIV3G itself as major urinary metabolite. The biological recovery of free NIV in urine was approximately 30 times lower after treatment with NIV3G than after administration of NIV, indicating that exposure of rats to NIV3G results in lower toxicity than exposure to NIV.


Subject(s)
Mycotoxins/metabolism , Trichothecenes/metabolism , Animals , Biotransformation , Feces/chemistry , Glucosides/metabolism , Glucosides/toxicity , Glucuronides/metabolism , Leukocyte Count , Male , Mycotoxins/pharmacokinetics , Rats , Rats, Sprague-Dawley , Trichothecenes/pharmacokinetics , Trichothecenes/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...