Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 290(1999): 20230368, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37221849

ABSTRACT

Hibernation consists of alternating torpor-arousal phases, during which animals cope with repetitive hypothermia and ischaemia-reperfusion. Due to limited transcriptomic and methylomic information for facultative hibernators, we here conducted RNA and whole-genome bisulfide sequencing in liver of hibernating Syrian hamster (Mesocricetus auratus). Gene ontology analysis was performed on 844 differentially expressed genes and confirmed the shift in metabolic fuel utilization, inhibition of RNA transcription and cell cycle regulation as found in seasonal hibernators. Additionally, we showed a so far unreported suppression of mitogen-activated protein kinase (MAPK) and protein phosphatase 1 pathways during torpor. Notably, hibernating hamsters showed upregulation of MAPK inhibitors (dual-specificity phosphatases and sproutys) and reduced levels of MAPK-induced transcription factors (TFs). Promoter methylation was found to modulate the expression of genes targeted by these TFs. In conclusion, we document gene regulation between hibernation phases, which may aid the identification of pathways and targets to prevent organ damage in transplantation or ischaemia-reperfusion.


Subject(s)
Hibernation , Transcriptome , Animals , Cricetinae , Mesocricetus , Liver , Gene Expression Profiling
2.
Dev Comp Immunol ; 119: 104024, 2021 06.
Article in English | MEDLINE | ID: mdl-33503449

ABSTRACT

Hibernation consists of alternating periods of reduced metabolism (torpor) with brief periods of metabolism similar to summer euthermia (arousal). The function of the innate immune system is reduced during hibernation, of which the underlying mechanisms are incompletely understood. Here, we studied neutrophil functionality during hibernation in Syrian hamsters. The inflammatory response to LPS-induced endotoxemia is inhibited in hibernation, partly mediated by reduced IL-6 production in early arousal. Furthermore, neutrophil pathogen binding, phagocytosis and oxidative burst is profoundly reduced in early arousal. Functionality of both summer and early arousal neutrophils was repressed in plasma from early arousal and mixed plasma from early arousal and summer euthermic, but restored by summer euthermic plasma, signifying that a plasma factor in early arousal inhibits TLR-recognition. Identification of the inhibiting factor may offer a target to modulate neutrophil function with relevance to (auto-)inflammatory diseases.


Subject(s)
Hibernation/immunology , Immunity, Innate/immunology , Mesocricetus/immunology , Neutrophils/immunology , Seasons , Acute-Phase Proteins/immunology , Animals , Arousal/genetics , Arousal/physiology , Carrier Proteins/blood , Carrier Proteins/immunology , Cytokines/immunology , Cytokines/metabolism , Gene Expression/immunology , Hibernation/genetics , Hibernation/physiology , Immunity, Innate/genetics , Immunoglobulin G/blood , Immunoglobulin G/immunology , Interleukin-6/immunology , Interleukin-6/metabolism , Lipopolysaccharide Receptors/blood , Lipopolysaccharide Receptors/immunology , Lipopolysaccharide Receptors/metabolism , Lipopolysaccharides/immunology , Lipopolysaccharides/metabolism , Membrane Glycoproteins/blood , Membrane Glycoproteins/immunology , Mesocricetus/genetics , Mesocricetus/metabolism , NF-kappa B/immunology , NF-kappa B/metabolism , Neutrophils/metabolism , Neutrophils/physiology , Phagocytosis/immunology , Respiratory Burst/immunology , Respiratory Burst/physiology , Time Factors
3.
Antioxid Redox Signal ; 31(2): 134-152, 2019 07 10.
Article in English | MEDLINE | ID: mdl-30403161

ABSTRACT

Significance: Sepsis is the main cause of death among patients admitted to the intensive care unit. As current treatment is limited to antimicrobial therapy and supportive care, mortality remains high, which warrants efforts to find novel therapies. Recent Advances: Mitochondrial dysfunction is emerging as a key process in the induction of organ dysfunction during sepsis, and metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis. Critical Issues: Here, we review novel strategies to maintain organ function in sepsis by precluding mitochondrial dysfunction by lowering energetic demand to allow preservation of adenosine triphosphate-levels, while reducing free radical generation. As the most common strategy to suppress metabolism, that is, cooling, does not reveal unequivocal beneficial effects and may even increase mortality, caloric restriction or modulation of energy-sensing pathways (i.e., sirtuins and AMP-activated protein kinase) may offer safe alternatives. Similar effects may be offered when mimicking hibernation by hydrogen sulfide (H2S). In addition H2S may also confer beneficial effects through upregulation of antioxidant mechanisms, similar to the other gasotransmitters nitric oxide and carbon monoxide, which display antioxidant and anti-inflammatory effects in sepsis. In addition, oxidative stress may be averted by systemic or mitochondria-targeted antioxidants, of which a wide range are able to lower inflammation, as well as reduce organ dysfunction and mortality from sepsis. Future Directions: Mitochondrial dysfunction plays a key role in the pathophysiology of sepsis. As a consequence, metabolic resuscitation might reveal to be a novel cornerstone in the treatment of sepsis.


Subject(s)
Combined Modality Therapy/methods , Multiple Organ Failure/prevention & control , Sepsis/therapy , Caloric Restriction/adverse effects , Energy Metabolism/drug effects , Humans , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/therapeutic use , Hypothermia, Induced/adverse effects , Hypothermia, Induced/methods , Mitochondria/drug effects , Oxidative Phosphorylation/drug effects , Sepsis/complications , Sepsis/physiopathology
4.
Article in English | MEDLINE | ID: mdl-29894736

ABSTRACT

Hibernation consists of torpor, with marked suppression of metabolism and physiological functions, alternated with arousal periods featuring their full restoration. The heart is particularly challenged, exemplified by its rate reduction from 400 to 5-10 beats per minute during torpor in Syrian hamsters. In addition, during arousals, the heart needs to accommodate the very rapid return to normal function, which lead to our hypothesis that cardiac function during hibernation is supported by maintenance of protein homeostasis through adaptations in the protein quality control (PQC) system. Hereto, we examined autophagy, the endoplasmic reticulum (ER) unfolded protein (UPRER) response and the heat shock response (HSR) in Syrian hamster hearts during torpor and arousal. Transition from torpor to arousal (1.5 h) was associated with stimulation of the PQC system during early arousal, demonstrated by induction of autophagosomes, as shown by an increase in LC3B-II protein abundance, likely related to the activation of the UPRER during late torpor in response to proteotoxic stress. The HSR was not activated during torpor or arousal. Our results demonstrate activation of the cardiac PQC system - particularly autophagosomal degradation - in early arousal in response to cardiac stress, to clear excess aberrant or damaged proteins, being gradually formed during the torpor bout and/or the rapid increase in heart rate during the transition from torpor to arousal. This mechanism may enable the large gain in cardiac function during the transition from torpor to arousal, which may hold promise to further understand 'hibernation' of cardiomyocytes in human heart disease.


Subject(s)
Arousal/physiology , Hibernation/physiology , Muscle Proteins/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Animals , Cricetinae , Heart Rate , Mesocricetus
5.
J Comp Physiol B ; 187(5-6): 725-734, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28324158

ABSTRACT

Research on deep hibernators almost exclusively uses species captured from the wild or from local breeding. An exception is Syrian hamster (Mesocricetus auratus), the only standard laboratory animal showing deep hibernation. In deep hibernators, several factors influence hibernation quality, including body mass, sex and diet. We examined hibernation quality in commercially obtained Syrian hamsters in relation to body mass, sex and a diet enriched in polyunsaturated fatty acids. Animals (M/F:30/30, 12 weeks of age) were obtained from Harlan (IN, USA) and individually housed at 21 °C and L:D 14:10 until 20 weeks of age, followed by L:D 8:16 until 27 weeks. Then conditions were changed to 5 °C and L:D 0:24 for 9 weeks to induce hibernation. Movement was continuously monitored with passive infrared detectors. Hamsters were randomized to control diet or a diet 3× enriched in linoleic acid from 16 weeks of age. Hamsters showed a high rate of premature death (n = 24, 40%), both in animals that did and did not initiate torpor, which was unrelated to body weight, sex and diet. Time to death (31.7 ± 3.1 days, n = 12) or time to first torpor bout (36.6 ± 1.6 days, n = 12) was similar in prematurely deceased hamsters. Timing of induction of hibernation and duration of torpor and arousal was unaffected by body weight, sex or diet. Thus, commercially obtained Syrian hamsters subjected to winter conditions showed poor survival, irrespective of body weight, sex and diet. These factors also did not affect hibernation parameters. Possibly, long-term commercial breeding from a confined genetic background has selected against the hibernation trait.


Subject(s)
Animals, Laboratory/physiology , Hibernation/physiology , Mesocricetus/physiology , Animals , Body Weight , Diet , Fatty Acids, Unsaturated/pharmacology , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...