Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122023 11 07.
Article in English | MEDLINE | ID: mdl-37934199

ABSTRACT

Male infertility is common and complex, presenting a wide range of heterogeneous phenotypes. Although about 50% of cases are estimated to have a genetic component, the underlying cause often remains undetermined. Here, from whole-exome sequencing on samples from 168 infertile men with asthenoteratozoospermia due to severe sperm flagellum, we identified homozygous ZMYND12 variants in four unrelated patients. In sperm cells from these individuals, immunofluorescence revealed altered localization of DNAH1, DNALI1, WDR66, and TTC29. Axonemal localization of ZMYND12 ortholog TbTAX-1 was confirmed using the Trypanosoma brucei model. RNAi knock-down of TbTAX-1 dramatically affected flagellar motility, with a phenotype similar to the sperm from men bearing homozygous ZMYND12 variants. Co-immunoprecipitation and ultrastructure expansion microscopy in T. brucei revealed TbTAX-1 to form a complex with TTC29. Comparative proteomics with samples from Trypanosoma and Ttc29 KO mice identified a third member of this complex: DNAH1. The data presented revealed that ZMYND12 is part of the same axonemal complex as TTC29 and DNAH1, which is critical for flagellum function and assembly in humans, and Trypanosoma. ZMYND12 is thus a new asthenoteratozoospermia-associated gene, bi-allelic variants of which cause severe flagellum malformations and primary male infertility.


Subject(s)
Asthenozoospermia , Infertility, Male , Humans , Male , Animals , Mice , Semen , Flagella , Fertility , Calcium-Binding Proteins , Dyneins
2.
Microorganisms ; 9(11)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34835460

ABSTRACT

BACKGROUND: In most trypanosomes, endo and exocytosis only occur at a unique organelle called the flagellar pocket (FP) and the flagellum exits the cell via the FP. Investigations of essential cytoskeleton-associated structures located at this site have revealed a number of essential proteins. The protein TbBILBO1 is located at the neck of the FP in a structure called the flagellar pocket collar (FPC) and is essential for biogenesis of the FPC and parasite survival. TbMORN1 is a protein that is present on a closely linked structure called the hook complex (HC) and is located anterior to and overlapping the collar. TbMORN1 is essential in the bloodstream form of T. brucei. We now describe the location and function of BHALIN, an essential, new FPC-HC protein. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that a newly characterised protein, BHALIN (BILBO1 Hook Associated LINker protein), is localised to both the FPC and HC and has a TbBILBO1 binding domain, which was confirmed in vitro. Knockdown of BHALIN by RNAi in the bloodstream form parasites led to cell death, indicating an essential role in cell viability. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate the essential role of a newly characterised hook complex protein, BHALIN, that influences flagellar pocket organisation and function in bloodstream form T. brucei parasites.

3.
Microbiol Spectr ; 9(2): e0091521, 2021 10 31.
Article in English | MEDLINE | ID: mdl-34704826

ABSTRACT

Trypanosoma brucei belongs to a genus of protists that cause life-threatening and economically important diseases of human and animal populations in Sub-Saharan Africa. T. brucei cells are covered in surface glycoproteins, some of which are used to escape the host immune system. Exo-/endocytotic trafficking of these and other molecules occurs via a single copy organelle called the flagellar pocket (FP). The FP is maintained and enclosed around the flagellum by the flagellar pocket collar (FPC). To date, the most important cytoskeletal component of the FPC is an essential calcium-binding, polymer-forming protein called TbBILBO1. In searching for novel tools to study this protein, we raised nanobodies (Nb) against purified, full-length TbBILBO1. Nanobodies were selected according to their binding properties to TbBILBO1, tested as immunofluorescence tools, and expressed as intrabodies (INb). One of them, Nb48, proved to be the most robust nanobody and intrabody. We further demonstrate that inducible, cytoplasmic expression of INb48 was lethal to these parasites, producing abnormal phenotypes resembling those of TbBILBO1 RNA interference (RNAi) knockdown. Our results validate the feasibility of generating functional single-domain antibody-derived intrabodies to target trypanosome cytoskeleton proteins. IMPORTANCE Trypanosoma brucei belongs to a group of important zoonotic parasites. We investigated how these organisms develop their cytoskeleton (the internal skeleton that controls cell shape) and focused on an essential protein (BILBO1) first described in T. brucei. To develop our analysis, we used purified BILBO1 protein to immunize an alpaca to make nanobodies (Nb). Nanobodies are derived from the antigen-binding portion of a novel antibody type found only in the camel and shark families of animals. Anti-BILBO1 nanobodies were obtained, and their encoding genes were inducibly expressed within the cytoplasm of T. brucei as intrabodies (INb). Importantly, INb48 expression rapidly killed parasites producing phenotypes normally observed after RNA knockdown, providing clear proof of principle. The importance of this study is derived from this novel approach, which can be used to study neglected and emerging pathogens as well as new model organisms, especially those that do not have the RNAi system.


Subject(s)
Calcium-Binding Proteins/immunology , Cell Death/immunology , Cytoskeletal Proteins/immunology , Single-Domain Antibodies/immunology , Trypanosoma brucei brucei/immunology , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/metabolism , Flagella/metabolism , RNA Interference , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/parasitology
4.
J Vis Exp ; (146)2019 04 06.
Article in English | MEDLINE | ID: mdl-31009012

ABSTRACT

This method allows the separation of trypanosomes, parasites responsible for animal and human African trypanosomiasis (HAT), from infected blood. This is the best method for diagnosis of first stage HAT and furthermore this parasite purification method permits serological and research investigations. HAT is caused by Tsetse fly transmitted Trypanosoma brucei gambiense and T. b. rhodesiense. Related trypanosomes are the causative agents of animal trypanosomiasis. Trypanosome detection is essential for HAT diagnosis, treatment and follow-up. The technique described here is the most sensitive parasite detection technique, adapted to field conditions for the diagnosis of T. b. gambiense HAT and can be completed within one hour. Blood is layered onto an anion-exchanger column (DEAE cellulose) previously adjusted to pH 8, and elution buffer is added. Highly negatively charged blood cells are adsorbed onto the column whereas the less negatively charged trypanosomes pass through. Collected trypanosomes are pelleted by centrifugation and observed by microscopy. Moreover, parasites are prepared without cellular damage whilst maintaining their infectivity. Purified trypanosomes are required for immunological testing; they are used in the trypanolysis assay, the gold standard in HAT serology. Stained parasites are utilized in the card agglutination test (CATT) for field serology. Antigens from purified trypanosomes, such as variant surface glycoprotein, exoantigens, are also used in various immunoassays. The procedure described here is designed for African trypanosomes; consequently, chromatography conditions have to be adapted to each trypanosome strain, and more generally, to the blood of each species of host mammal. These fascinating pathogens are easily purified and available to use in biochemical, molecular and cell biology studies including co-culture with host cells to investigate host-parasite relationships at the level of membrane receptors, signaling, and gene expression; drug testing in vitro; investigation of gene deletion, mutation, or overexpression on metabolic processes, cytoskeletal biogenesis and parasite survival.


Subject(s)
DEAE-Cellulose/chemistry , Ion Exchange Resins/chemistry , Trypanosoma/isolation & purification , Animals , Anions , Arginase/metabolism , Blood/parasitology , Chromatography , Female , Glucose/metabolism , Macrophages/drug effects , Macrophages/enzymology , Mice , Pentamidine/pharmacology , Threonine/metabolism , Trypanosoma/drug effects , Trypanosoma brucei brucei/drug effects
5.
PLoS One ; 10(5): e0126160, 2015.
Article in English | MEDLINE | ID: mdl-26000967

ABSTRACT

BACKGROUND: Previous studies have found the prevalence of lameness in working horses to be 90-100%. Risk factors for lameness in this important equine population, together with risk-reduction strategies adopted by their owners, are poorly understood. The objective was to uncover risk factors for lameness and limb abnormalities in working horses, by associating clinical lameness examination findings on three occasions over two years with owner reported changes in equine management and work practices over this period. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-one communities of horse owners in Jaipur, India, took part in a participatory intervention (PI) project aiming to reduce risk factors for poor welfare, particularly lameness and limb problems. Associations between quantitative measures of equine lameness/limb abnormalities and reported changes in management and work practices were compared with 21 control (C) communities of owners where no intervention had taken place. Key findings from 'complete cases', where the same horse stayed with the same owner for the whole study period (PI group = 73 owners of 83 horses, C group = 58 owners of 66 horses), were that more positive statements of change in equine management and work practices were made by PI group owners than C group owners. A mixed picture of potential risk factors emerged: some reported management improvements, for example reducing the weight of the load for cart animals, were associated with improved limbs and lameness, and others, such as making improvements in shoeing and increasing the age at which their animals started work, with negative outcomes. CONCLUSIONS/SIGNIFICANCE: This study illustrates the complexity and interacting nature of risk factors for lameness in working horses, and highlights the importance of longitudinal investigations that recognise and address this. PI group owners found the project useful and requested similar inputs in future. Our findings demonstrate the value of exploratory and participatory research methodology in the field of working horse welfare.


Subject(s)
Animal Husbandry/methods , Horse Diseases/epidemiology , Lameness, Animal/epidemiology , Animals , Female , Gait , Horses , India , Male , Prevalence , Risk Factors , Risk Reduction Behavior
6.
PLoS One ; 10(4): e0124342, 2015.
Article in English | MEDLINE | ID: mdl-25898014

ABSTRACT

BACKGROUND: Participatory methods are increasingly used in international human development, but scientific evaluation of their efficacy versus a control group is rare. Working horses support families in impoverished communities. Lameness and limb abnormalities are highly prevalent in these animals and a cause for welfare concern. We aimed to stimulate and evaluate improvements in lameness and limb abnormalities in horses whose owners took part in a 2-year participatory intervention project to reduce lameness (PI) versus a control group (C) in Jaipur, India. METHODOLOGY/PRINCIPAL FINDINGS: In total, 439 owners of 862 horses participated in the study. PI group owners from 21 communities were encouraged to meet regularly to discuss management and work practices influencing lameness and poor welfare and to track their own progress in improving these. Lameness examinations (41 parameters) were conducted at the start of the study (Baseline), and after 1 year and 2 years. Results were compared with control horses from a further 21 communities outside the intervention. Of the 149 horses assessed on all three occasions, PI horses showed significantly (P<0.05) greater improvement than C horses in 20 parameters, most notably overall lameness score, measures of sole pain and range of movement on limb flexion. Control horses showed slight but significantly greater improvements in four parameters, including frog quality in fore and hindlimbs. CONCLUSIONS/SIGNIFICANCE: This participatory intervention succeeded in improving lameness and some limb abnormalities in working horses, by encouraging changes in management and work practices which were feasible within owners' socioeconomic and environmental constraints. Demonstration of the potentially sustainable improvements achieved here should encourage further development of participatory intervention approaches to benefit humans and animals in other contexts.


Subject(s)
Horse Diseases/prevention & control , Lameness, Animal/prevention & control , Animals , Extremities/pathology , Gait , Horses , India
SELECTION OF CITATIONS
SEARCH DETAIL
...